Category Archives: Far from the Spaceports

Fermentation

Last week’s blog post, all about alcohol and law, triggered a number of interesting discussions, and one of them (from a Goodreads friend) has inspired this post. It all started with my brief comment about the prospects of brewing on the ISS, up in the microgravity of low earth orbit. But before we get into space, let’s think about what happens during fermentation. (I’m going to mostly focus on beer in this post but similar comments could probably be made about wine).

Beer making in the Egyptian 6th dynasty (British Museum)
Beer making in the Egyptian 6th dynasty (British Museum)

People have been brewing beer for many thousands of years – in Egypt the process was well-organised long before 2000BC, and the earliest confirmed evidence for beer-making that I am aware of is from the 5th millennium BC, at Godan Tepe in modern Iran. I strongly suspect the history is much longer, and that more evidence will turn up in time.

Pottery beer jar, Egypt, c. 1600BC (British Museum)
Pottery beer jar, Egypt, c. 1600BC (British Museum)

Beer making has been credited with all kinds of benefits to humanity, including driving an early wave of technological development. Quite apart from the enjoyment factor. Back then, and for a great many years subsequently, beer was made in open fermentation vessels – basically very large pottery containers, semi-porous and so holding on to residues of yeast and the like. It was often a spin-off of the bread-making industry, seeing as how you needed yeasts and grains for both. Both bread- and beer-making have had, at times, vaguely magical or alchemical associations – these very ordinary foodstuffs are hidden away in a very ordinary vessel, and over the course of a few days they transform into something quite extraordinary. In early times, hops were not added (this seems to have been introduced in the middle ages), but people did sometimes add other flavourings such as fruit or spice extracts.

A 16th century brewery (Wiki)
A 16th century brewery (Wiki)

Now, during fermentation the yeasts work with the various sugars in the raw mixture, together with oxygen in the air at the top surface, and convert these into alcohol and CO2. The process is self-limiting – yeasts eventually kill themselves in too high a proportion of alcohol, so fermentation slows and stops. A brewer can choose whether to let the process go on to completion, or stop it early. An early finish means lower abv (alcohol by volume… the strength of the brew) and a sweeter drink. In olden days, I suspect brewers had conventions about how many days to leave the mixture – nowadays brewers have a more mathematical set of targets to do with final abv balanced against taste. Also, large breweries are very interested in keeping consecutive batches consistent about strength and flavour, whereas a domestic brewer, or someone in pre-industrial days, was less bothered about this.

Finally, carbonation. If you are brewing in an open-top vessel, all the CO2 generated simply goes out into the air. And if you are brewing at room temperature, especially in a hot climate like Egypt, not much gas is held in the liquid anyway. Nowadays we brew and store beer at specific temperatures in order to achieve a target level of carbonation. The colder the beer, the more gas it can retain, and then release as the drinker opens it up at room temperature. You brew for the preferences of your target market – lots of fizz (as in many lagers) or hardly any (as in many real ales).

Fermentation vessels - Grasmere
Fermentation vessels – Grasmere

That brings us onto the specific issue that triggered these fine discussions. What happens in low gravity? Not a problem in ancient Egypt, but looking ahead it’s an issue we will want to solve. Consider a modern fermentation vessel – a cylinder, usually with a cone at the base, and considerably taller than a person. As yeast ferments here on earth, different groups of yeasts arrange themselves at different levels in the vessel – some near the top and others near the bottom. This reflects slightly different ways in which they turn the sugars into alcohol… the sugar level varies in a gradient as you go up and down the vessel. As the yeast becomes exhausted, and starts to die because of the alcohol percentage, the yeast particles sink into the cone, taking with them some of the other residues like hops, grain particles and so on. The beer slowly clarifies by itself, though most brewers also use specific methods to end up with a clear rather than cloudy beer.

The ISS in low earth orbit (NASA/JPL)
The ISS in low earth orbit (NASA/JPL)

That’s fine here on Earth… but in orbit several problems arise. First, there is no real sense of up and down. So a yeast that is used to being near the top of a vessel, with its preferred environment of sugars and whatever, does not know where to go. Likewise, as they finish their job and die from overindulgence in alcohol, there is no “down” direction into which they can settle. Finally, there’s no particular reason why the liquid would stay in one clump – you could easily end up with several disjoint blobs of liquid, with varying proportions of the yeast you had added, each fermenting to different extents.

Centrifugal Fermenter (speculative!)
Centrifugal Fermenter (speculative!)

So this was the point I got to in my Goodreads discussion, which triggered several follow-up chats here in Grasmere. Not that we’re (yet) planing on an orbital version of our various beers and ales, but it is good to be ready for the future! The best answer we could come up with was to artificially introduce a sense of up and down by means of a kind of slow-speed centrifuge. Not so fast as to drive all the solid matter to the outside too quickly, seeing as you need it spread through the liquid at first, but fast enough that the liquid stays in one body, and the yeast can tell which tell which way is up and down. (As a side issue, you’d probably want two of these, rotating in opposite directions, so as not to off-balance the space station itself).

The fermentation will generate CO2, and you don’t want to just dump that into the cabin air supply, so you capture that with a safety valve coming out along the spindle (the “top” of the vessel). That can then either be kept for later use – as many breweries fixed here on Earth do, so as to reuse a resource which costs real money – or fed slowly back into whatever air-purification system takes your fancy. When the time comes to clarify your beer, you just spin the centrifuge faster and let the solid particles accumulate in the “bottom”, taking the splendidly clear beverage out of the “top”.

Artwork, astronaut drinking on the moon (WallpapersByte)
Artwork, astronaut drinking on the moon (WallpapersByte)

Bottling would be an interesting task, since yet again it is something that here on Earth relies on gravity as well as some back-pressure to get the liquid where you want it to go. But if you’ve successfully got this far, I’m sure that the final stage of getting your finished beer into some kind of container would not be an insuperable problem. In orbit you want low carbonation anyway – the last thing you want is for some rogue container to fob frothy mix all around the interior of your capsule. So you keep the whole thing chilled, to hold the gas in suspension in the liquid, and in any case you aim for a quiet liquid rather than a lively one! And voila – you have Orbital Beer, and happy astronauts…

As mentioned very briefly in Far from the Spaceports, concerning the legendary Frag Rockers bar,

“You’ll need to go to Frag Rockers to get anything decent. Regular fermentation goes weird in low gravity. But Glyndwr has got some method for doing it right. He won’t tell anyone what.”

For the curious, here is a British Museum video of recreating an ancient beer-making process based on what we know of ancient Egypt…

 

Laws, qualifications, and the drinking of alcohol

University of Cumbria at Barrow - where I took the course
University of Cumbria at Barrow – where I took the course

I heard today that I had passed the study element of a Personal Alcohol Licence, which (after I have gone through a police background check and a few other formalities) allows me to authorise the sale of alcohol in England and Wales. Not in Scotland, Northern Ireland, or indeed anywhere else in the world, but I guess you have to start somewhere.

Now, this is far from my most advanced academic qualification, but the intriguing thing about this one is that it legally entitles me to supervise – and therefore take legal responsibility for – the public sale of what is undoubtedly a kind of drug. Without the licence, I can work under someone else’s supervision, but cannot just set up and flog booze on my own account. With it, and subject to a bunch of other constraints, I can do just that.

You can imagine that a fair proportion of the material, and the final test, focused around UK law relating to drink. There are obvious things to do with the age of the drinker, but I also learned that it is a specific legal offence to sell alcohol to someone who (in the considered opinion of the seller) is already drunk. Too much like shooting fish in a barrel, I suppose. Most of the laws fit around common sense, though as with any body of legal material you are left a little perplexed as to why specific conditions were imposed.

Russian troops and Finnish smugglers, 1853 (Vasily Hudiakov, WIki)
Russian troops and Finnish smugglers, 1853 (Vasily Hudiakov, WIki)

Anyway, all this set me thinking about law and qualification. The government of the day, however it was decided, has for a very long time indeed decided that it is entitled to a certain proportion of the profits from various kind of sales – and alcohol has typically been way up the list. And of course where rulers try to enforce a ruler, some subjects will concoct cunning schemes to get around the additional expense – excise duty spawns groups of smugglers almost by definition. But you only risk smuggling goods where the financial equation makes sense – small, easily concealed items where the tax duty is high enough that you can pocket a decent cut for yourself, while still leaving the buyer feeling they have done very well out of the deal.

So customs duties, and the body of regulations which underpin them, have been around for millennia. And – typically – part of those regulations consists of ways to appoint specific individuals as those few who are allowed to make transactions. In days of old, one suspects that many of these appointments were based on nepotism or bribery… if you had the right connections, or could stump up enough starting cash, you could find yourself in a comfortable position and set up for life. Nowadays the process is rather more transparent, and the barriers to entry are very much lower.

The Jolly Sailor, Bursledon (www.jollysailoroldbursledon.co.uk)
The Jolly Sailor, Bursledon (www.jollysailoroldbursledon.co.uk)

But equally, things have been tightened up in other ways. A couple of hundred years ago, it was fairly common for ex servicemen to use their prize money, or sign-off pay, or whatever they had saved up, to buy a little inn somewhere, and make a tidy living brewing or distilling booze of widely varying quality, and plying locals with the results. (Any pub you find called the Marquis of Granby recalls charitable donations by this 18th century gentleman who donated money to wounded servicemen). Provided you could afford a small building and a few bits and pieces to do the fermentation, you could set yourself up, no questions asked. These days, you have to go through hoops like planning permission, health and safety, police, plus of course getting a premises licence. There are all kinds of reasons why an apparently sound business plan might be rejected by officialdom.

The ISS (NASA/JPL)
The ISS (NASA/JPL)

So that is looking back… but what about forwards? Right now the only human outpost we have away from the Earth is the ISS. It’s not very far away – about 400km above the surface of the Earth, less than the distance from one end of England to the other. And I don’t suppose that the occupants have much privacy or opportunity to set up fermentation or a distillery up there. Though I did hear today that Budweiser has funded one of the science experiments on board, seeking to improve strains of barley with increased resistance to environmental stress. So maybe next year someone wil fund a experiment to make beer up there and see how yeasts behave in microgravity!

Alexa Far from the Spaceports logo
Alexa Far from the Spaceports logo

But let’s assume that within the next couple of decades we have an outpost or two somewhere else – the Moon, say, or Mars, or even a privately operated space station. How likely is it that nobody will attempt to ferment fruit or vegetable juices? And whose laws will be applied to regulate such an operation? Now run the scenario on a few more years, into the solar system I imagine for Far from the Spaceports and its sequels. There are a decent number of scattered habitats, each separated from the others by at least days, often weeks, and sometimes months of travel time. It will, I suspect, become impossible to try to enforce some kind of uniform system of laws.

Alexa Timing logo
Alexa Timing logo

My guess is that each habitat will have its own local set of laws and customs – no doubt broadly consistent with each other, but differing in detail. Sure, you can send a message anywhere in the solar system within a day at most, but if you get a tip-off that the habitat on Charon is bootlegging some kind of moonshine drink that is not allowed on the Moon, it’s going to take your police three or four months to trek out there and investigate. Will they bother? In that kind of situation, I don’t think it is feasible to try to maintain a single unified system of laws and regulations. So now suppose I have trained for my personal alcohol licence here on Earth (which in fact I did), and then decide on a whim to travel out to Charon. Will a publican out there recognise my licence? Or will he or she make me study for a duplicate one, ending up with a signature of someone on Charon rather than Earth? Right now, in the present day, it is extraordinarily hard to transfer qualifications between countries in professions like teaching, nursing, psychotherapy, and so on – will things be any different when we’re scattered across a few dozen habitats? I suspect not, especially as my own new licence doesn’t even allow me to do stuff in Scotland!

All of which is why I like writing about that near-future band of time, when there is no Federation, no Galactic Empire, or whatever – only local enforcement of issues according to moral and social principles which makes sense to the occupants. I suspect the chief coordinating factor would be economic – if you felt that some particular habitat was doing things the wrong way, you wouldn’t trade with them. They would become isolated, and there’s nowhere in the solar system away from Earth that can actually be self-sufficient. Hence I write about economic and financial crime, as these are the things that seriously threaten lives and livelihoods.

Dawn, death, and ion drives

Dawn takes off, September 27th 2007 (KSC/NASA)
Dawn takes off, September 27th 2007 (KSC/NASA)

Last week, NASA’s Dawn space probe, which first launched back in 2007, finally ran out of fuel and has been declared dead. Regular readers will know that Dawn has been a great source of information and inspiration for me as I have been creating the future world of Far from the Spaceports, Timing, and the in-progress The Liminal Zone. So it seemed fitting to me to do a kind of tribute to Dawn here.

So here’s a timeline of key events:

  • September 2007 — Launch
  • February 2009 — Mars Gravity Assist
  • July 2011 — Vesta Arrival
  • September 2012 — Vesta Departure
  • March 2015 — Ceres Arrival
  • June 2016 — End of prime mission
  • July 2016 — Start of first extension
  • November 2017 — Start of second extension
  • November 2018 — No remaining fuel: mission ends
Enhanced colour image of Ceres (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
Enhanced colour image of Ceres (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

Of course, Dawn is not going anywhere – it will remain in its current orbit around Ceres for decades at least, until some combination of inevitable gravitational perturbations distorts that orbit enough that it eventually crashes into the surface. But there will be no more navigation from Dawn, no more course correction, no more photos or science information.

I want to talk a bit about Dawn’s ion drive, in the connection of storytelling, but if you want pictures and information about the mission findings, the best place to start is the NASA site, which has separate pages for Vesta and Ceres.

So, the ion drive. Most craft up to now have used chemical rockets – two or more chemicals are stored separately, then mixed to form a high-energy burst of propulsion. For example, the latest SpaceX SuperDraco engine uses the two liquids nitrogen tetroxide and Monomethylhydrazine. The net effect is that the spacecraft is pushed with high acceleration in a particular direction. After this engine burn, the craft coasts with no further propulsion for days or months, until it’s time for another correction. Astronauts in the craft have to endure short periods of high g-forces, followed by long periods of weightlessness. The engine burns have to be very precisely calculated for direction, force, and duration, so as to minimise the need for subsequent burns. Once the fuel is gone, it’s gone, and each burn takes a fair proportion of the fuel stores.

Falcon Heavy launch, February 6th 2018 (SpaceX via Wikipedia)
Falcon Heavy launch, February 6th 2018 (SpaceX via Wikipedia)

What does this mean for storytelling? Well, most of the journey is spent at zero acceleration, coasting towards your destination without burning fuel, and without any sense of up or down. It took the Apollo astronauts about three days to get from the Earth to the Moon (and the same back again, after doing stuff on the lunar surface). As and when SpaceX or whoever sends another rocket there, it will still take about three days – the time taken is a result of the coasting period without power, not the force of the engine. And because of the long zero-gravity sections, you need to be fairly well-trained to manage this.

SpaceX 'Starman' orbit (SpaceX Twitter feed)
SpaceX ‘Starman’ orbit (SpaceX Twitter feed)

Now consider a trip to Mars. In February of this year, SpaceX launched a Falcon Heavy rocket, with payload of a Tesla car and suitable contents. It left Earth orbit and headed out on an orbit that goes out past Mars, but at a slight angle so that the two never intersect. Each orbit takes 557 days to complete, so at this point not even one has been finished. The payload – a Tesla car – passed by Mars orbit a few days ago, after about eight months.

The Hermes rocket from the film The Martian (http://the-martian.wikia.com)
The Hermes rocket from the film The Martian (http://the-martian.wikia.com)

Now, this rocket had not reserved enough fuel to slow down and enter Mars orbit – it was a vivid proof of concept for SpaceX, not a real attempt to land on the Red Planet. But basically, if a human crew does the same journey in the same rocket, it will take them about eight months to get there – eight months of zero gravity, unless rocket design changes to include a kind of pseudo-gravity produced by rotation, as in the Hermes spacecraft in The Martian.

Getting out into the solar system on chemical rockets just prolongs these figures. Potential astronauts have to cope with months, if not years, of isolation and low gravity. It is just not viable to send people there, which is why the present focus has been on sending hardware and instruments.

Schematic diagram of ion drive (NASA/JPL)
Schematic diagram of ion drive (NASA/JPL)

Enter the ion drive, as used on Dawn and a handful of other craft. It is, in some ways, the opposite of a chemical rocket. It produces small amounts of drive thrust continuously for a very long time. NASA estimates that the thrust of the engines on Dawn is roughly the same as what you feel when you hold a piece of paper on the palm of your hand. It’s quite useless for getting off the Earth’s surface – you really do need something powerful for that – but as a way to get you from Earth to Vesta… or Vesta to Ceres… From a standing start in free space, Dawn would take about four days to go from 0 to 60 mph. But that ion drive just keeps piling on speed. Dawn’s engine ran for a total of about 2000 days during the mission – over 5 years.

Artist's impression, Dawn at Ceres (NASA/JPL)
Artist’s impression, Dawn at Ceres (NASA/JPL)

Now, if you have an engine that is always-on, your whole picture of the solar system changes. Let’s suppose you keep accelerating to the mid point, then flip over and decelerate the rest of the way, so that you get to feel a constant gravity all the way. Then further is more efficient. In twice the time you can go four times the distance. Or, to put the same thing another way, to go twice the distance takes less than one and a half times the time.

Of course, Dawn’s motors were still early versions of the design, with a low thrust output even at maximum. For my stories, I’ve assumed that the design can be enhanced to give an acceleration equivalent to 1/20 of that at Earth’s surface – considerably less than what you get on the moon. It would take some getting used to, but it means that your body and brain have a clear sense of up and down, and all those physiological functions that need gravity have a good chance to keep going! What does this mean for travel time?

  • Earth to Mars takes between ten and twenty days, depending on their relative position at the time of launch
  • Earth to Ceres takes about 3 weeks
  • Earth to Pluto takes about three months
Timing Kindle cover
Timing Kindle cover

That works for storytelling – it’s not very different from journeys that people would take by sail back in the day. For example, an 18th century trip from England to India would take something like four to six months. Once the Suez canal was open, this reduced to about two months. People will put up with a journey like that for all kinds of reasons. So that’s roughly how you can imagine the solar system of my science fiction novels – a bit like our world was in the days of sail and early steam ships.

Here’s a short extract from Timing, in which journey time gets discussed a bit. Meanwhile, RIP Dawn!

Then, quite suddenly, I had been sent all the way to the Jovian system. That would have been fair enough after the local jobs, but it turned out to be a false alarm. One of the analysts thought he had seen a recurrence of an old scam, running out of the Callisto hub. So off we had gone – a long journey for both Slate and I, and when we left Earth orbit the planetary alignment meant there were no friendly stopovers to break the journey.

Once we got there, the two of us had poked around, wormed our way into this module and that, but found nothing. To be sure, we confirmed that the reported irregularities were real. We had easily managed to find the batch runs where the credit had gone missing, by comparing input and output. It happened every time a specific input value was missing or unreadable, and a default value had to be assumed. But the chosen default looked right and we couldn’t find root cause. The code was non-standard, and frustratingly weird, but there was nothing obviously suspicious. The logs were so skimpy as to be almost useless. It did not seem to be the kind of task that needed our skills, nor to be as much of a problem as the analyst had first thought.

When it was over, and having drawn a blank, we sent a summary report down to the Finsbury Circus office, suggesting that perhaps it would be more effective to send an accountant. We had managed to get four weeks out of the work, but it still felt like a long drag for not much return. To be fair, it was unusual for the analysts to make a mistake like that, so I was professionally polite rather than curt. Then it was time to warm up the engines of our sloop, the Harbour Porpoise, and off we set on the homeward leg.

I was all set for a boring journey back down the gravity hill to Earth, but Slate found an orbital option which would take us right past the Scilly Isles. That settled it. We deserved a reward for our fruitless diligence. So we changed the navigation plan, sent some messages ahead, and here we were. Elias, my manager back in London, had made a token protest at the diversion, but I told him that the Harbour Porpoise needed servicing and the delay was unavoidable.

Anyway, a couple of hours signal lag meant that we were already en route by the time his answer came back. We just said that we didn’t have enough reaction mass for such a radical course change. It might even have been true, though I was careful not to ask Slate for a technical analysis, and she was just as careful not to offer one.

Regardless of that, we weren’t minded to listen. Slate and I both reckoned that we deserved the break. Six weeks of voyage out to Callisto, and four weeks of fairly dull work had not made us receptive to a tedious trip straight back home again. It would mean nearly three months’ travel time for just one month of work, and we weren’t about to just put up with that without an argument.

Tesla Starman (SpaceX Twitter feed)
Tesla Starman (SpaceX Twitter feed)

Ultima Thule

Today’s blog is focused on the next target of the New Horizons probe, which back in July 2015 sent back such remarkable pictures of Pluto and Charon. But before that, here’s a quick reminder of this week’s Kindle Countdown deals for Far from the Spaceports and Timing – £0.99 / $0.99 for the next couple of days. Follow these links…

New Horizons route, including Pluto and Ultima Thule (Wiki)
New Horizons route, including Pluto and Ultima Thule (Wiki)

Right. New Horizons. After the Pluto flyby, the natural question was, what next? There was enough fuel and energy reserves to consider a small course change… but to what end? Pluto is at the inside edge of the Kuiper Belt, a tenuous and very sparsely populated volume of space. Over the last few years, we have been steadily gaining information about some of the contents, many of which have hugely elongated orbits. The big prize out there is the possibility of a really sizeable planet, acting as a gravitational shepherd to coax the smaller bodies into resonant patterns.

Planet 9 has not yet been found, but several smaller bodies have. And one of them, catalogue number KBO 2014 MU69 , happened to be well placed for New Horizons. So, an appropriate course change was made as Pluto dwindled into the distance, and KBO 2014 MU69 – now provisionally renamed Ultima Thule – became the next goal.

Current New Horizons view of Ultima Thule (NASA/JHUAPL/SwRI)
Current New Horizons view of Ultima Thule (small dot on right-hand frame) (NASA/JHUAPL/SwRI)

But distances out in the Kuiper Belt are large, so there has been a considerable wait. Ultima Thule is about 12% further away from Earth as Pluto is. The actual flyby will occur on January 1st next year, and at this stage we still don’t really know what to expect. The Hubble telescope orbiting Earth shows Ultima Thule as just a slowly moving point of light. New Horizons is about 33 million miles away from it – about 1/3 the Earth-Sun distance – and still can’t resolve it to more than just a point source. We cannot make out any surface detail. We don’t know if it’s roughly spherical, or irregular, or even a little cluster of fragments all moving together. Just about all we know is that it’s less than 40 km across, and although very dark by the standards we are used to in the inner system, is slightly more reflective than expected.

Artist's impression, New Horizons and Ultima Thule (Steve Gribben/NASA/JHUAPL/SwRI)
Artist’s impression, New Horizons and Ultima Thule (Steve Gribben/NASA/JHUAPL/SwRI)

After sending the Pluto and Charon data home, New Horizons went to sleep for a couple of years, with a wake-up call in June for some of the instruments and a course correction. It is now being prepared as best we can for the encounter. It’s a fascinating problem – light or radio signals take around 6 hours to cross the gulf between us and the probe, so there is no possibility of direct control.  Any reply takes another 6 hours to get back. The systems have to be set up in advance, according to our best guess of what will be there. The final course changes will occur in mid December, when the ground crew wil decide just how close to steer towards Ultima Thule. In one sense, the nearer the better… but the higher the risk that the probe will make brief, catastrophic contact with some fragment of rock and ice. On the day, the probe will whistle by at over 30000 km/h, so there’s no opportunity for second chances. Whatever sequence has been set up in advance, will be played out without modifications. After that, New Horizons will spend the better part of two years streaming the data back to Earth. So although the rendezvous will be a New Year treat, we shall have to wait a long time until we get any high-resolution images or other data.

As yet I haven’t written about what life might be like in a suitably protected environment out in the Kuiper Belt… maybe this encounter will be the seed of another book, in the way that the flyby past Pluto and Charon has contributed to The Liminal Zone. And here, just for a bit of fun, are someone’s first impressions of the settlement on Charon, extracted from the early sections of The Liminal Zone

Nina walked steadily along the winding curves of Lethe towards Asphodel. The house AI had finally told her where Lance’s quarters were situated in Acheron, and had transferred directions onto a hand-held to direct her there. From space, the overall shape of the Charon settlement had been clear – five sinuous linear habitats, following curves in the underlying terrain and joined radially to Asphodel. When you were actually down here, it wasn’t nearly so neatly divided. There were extra little corridors and alcoves which broke up the superficial symmetry, and little tunnels that dived underground and then resurfaced at unexpected places. She was glad that the little hand-held router buzzed faintly at junctions to tell her which way to turn.

Changes… and Kindle Countdown deals

A short post this week, mainly consisting of two extracts, one each from Far from the Spaceports and Timing. These are both on Kindle Countdown deals from this Friday, October 26th, for one week, price set at £0.99 / $0.99 depending which side of the Atlantic you’re on. More of that later… here are the extracts.

The main characters are Mitnash (Mit) and his AI persona partner Slate. in this extract, Mit and Slate are recovering from a difficult episode in which Slate was hacked by a shady individual known as The Wise Man…

Far from the Spaceports (follow this link)


Far from the Spaceports cover
Far from the Spaceports cover

“Slate, how much do I talk to you without knowing it?”
She was amused.
“All the time, Mit. You murmur to yourself while you’re thinking, and you subvocalise throughout the day. There’s very little about your thought life I don’t know. Or your fantasy life. You’re whispering to me almost all the time.”
I sat back, bouncing a little as I forgot to adjust the move for the low gravity.
“Oh.”
“It’s nice. I like it. It makes me feel very intimately connected with you. Why? Does it worry you?”
“Not with you, no. If I can’t trust you, I might as well give up now. But I suppose that means you know all sorts of things that I have never told Shayna.”
I considered that soberly, while she was tactfully not replying. It was definitely something to think through on another occasion.
“But anyway, when the hand-held had been compromised, and that other thing was quizzing me, I started to wonder how much I was giving away. Or how much the Wise Man was learning without me knowing.”
“While you were in his quarters, he would have had a direct link from the hand-held into his main system. It was a very old model Ziggurat, like I said before, not very responsive at all. Male gendered, but only just. Badly set up and very poorly programmed. But he has the name Hunn Gravfelt, which at least shows that one of them has read a few decent books. Very arty. But anyway, once you left there, he had no way of querying the hand-held until you got linked up to a ground system. He’s a shady character, but not a very competent one.”
“I suppose the big question is how much information he now has.”
“Yes. But actually, we don’t know for sure what he was able to derive while you were on Agnes. We deliberately left a lot of material out in the open, so he would find it easily enough. We now have to wait and see where that turns up. Like the breadcrumbs in the old children’s stories.”
“But he doesn’t know anything I said on the way home?”
“No. There was a very large data packet all ready to be sent back, but it was never buffered. Do you want to know what was in it?”
I stayed silent and thought about it for a long time, and Slate stayed silent with me.
“Don’t tell me the details. But do run through it again, and tell me if I was about to give away anything critical to the job. Or that might have put Shayna at risk.”
There was a very short pause.
“Nothing like that. If Yul Yulsson was a voyeur, and if he’d ever received it, he could have had some fun with it, for sure. But he would not have learned anything of real value. There’s actually more about me in the packet than Shayna.”
“Hmm. Best not to tell her that, if you don’t mind.”
“This can be our secret.”
I moved to the cabin, pulled out some of the new pieces of clothing which, so far as I could tell, would help me fit in at the Frag Rockers bar a lot better than the formal garb I had worn to see the Wise Man.
“Slate, who’s leading at Frag Rockers tomorrow?”
“A prog rock fusion band called The Descenters. The keyboard player and drummer are locals, from St Martins and Tresco respectively, and the rest are from Ceres. They have a very big fan book on SystemPlus. They’re best known for extremely long concept gigs. They lost their way a bit with Trails on Topological Notions – the twenty-eight minute triangle solo called Geodesics confused even their best fans. But then the electro-gamba player left, and they built up their reputation again.”
“Will I like them?”


Next up, in another book, Mit is discussing a recent shipwreck with his friend Parvati…

Timing (follow this link)


Timing Kindle cover
Timing Kindle cover

I wanted human company again, so I stretched and went in search of Parvati. She was brewing chai as I wandered in to the kitchen. Seeing me, she doubled up the amounts, found a second mug, and arranged some savoury crackers and a red and yellow striped cake on a tray.
“Did you and Slate get anywhere?”
I shook my head.
“Total blank. The figures don’t tell us any more than the basic alert message we got from Finsbury, and they won’t let us access the code yet. There’s almost nothing we can do until we get there.”
We moved back to the bridge and enjoyed the snack together.
“Chandrika just picked up the latest from the wreck site for Selif’s ship, if you’re interested?”
I very definitely was interested. We finished the crackers, and she sliced two generous portions of the cake.
“They’ve made available the results from the data recorders. There’s nothing at all unusual until about three minutes before the crash. At that point, Selif took the vessel’s riding lights offline and uploaded an amendment to the nav plan.”
“Presumably to avoid being identified by the duty porters?”
“Most likely, yes. You’re not supposed to disengage them, but people do. As you say, he was motivated to slip in without attracting attention. It’s also uncommon to amend the plan at that late stage, but it happens. Anyway, the upload was completed successfully, taking only the expected lag. Except that a couple of seconds later, both recording devices ceased gathering data. At the same instant. That is unheard of.”
I looked at her.
“How did that happen?”
“The maintenance log for the recorders showed that Selif had skipped two routine services. So they highlighted that in the report, and almost immediately the manufacturer put out advisory notices basically denying all responsibility if people ignore the recommended schedule. So the official version simply lists an open verdict.”
“Is there an unofficial version?”
She grinned.
“Of course. Chandrika, why don’t you tell them?”
“To be sure. I heard this from one of the personas on Martin’s. He works part-time with a man who’s an expert on the embedded systems in boat engines.”
I nodded. It was a highly specialised area, and one that I knew next to nothing about. But it made sense that a man with those skills would have an opinion on data recorders.
“Well, he said two things. One is that a full restart cycle for those boxes is about half a second longer than the time from the point of failure up until the impact on Teän. And the second thing is that there are only two known exploits for that model of recorder which could bring down both boxes together. One of them cannot possibly have anything to do with this case: a different ship configuration altogether. The other one happens to rely on a routing plan change.”
I sat there, absorbing the news. It made sense that these units would go into an automatic reboot mode if they went dark for some reason. Normally that would restore them to full operation in plenty of time to carry on doing their job. But in this case, the boat had hit Teän before they had started up again. I stirred in my seat, but Slate beat me to it.
“That’s very precise timing on someone’s part. Does anybody think it is just a coincidence?”
“Oh, Slate, the official verdict is open. Nobody is suggesting anything.”
We all laughed together.
“Either it was phenomenally bad luck on their part, or…”
I paused, and Parvati continued.
“Or else someone wanted rid of them, and found a clever way to do it.”


Why the Countdown deals? Well, the last day of October marks the last day of my current job in London. I shall be opening a new phase of working life up in Cumbria. Expect more posts about life up there.

So it seemed fitting to post some extracts, and to discount on Kindle, my science fiction series where coding, AI, and financial fraud in space are the main themes.

But I’m not saying goodbye to that style of writing! As regular readers will know, The Liminal Zone shares a lot in common with those books, though it has a different focus and is set a couple of decades further in the future. And behind that, the third in the Spaceports series is toddling along, tentatively named The Authentication Key at present.

Next week’s post will still be from London, but the one after that will be from Grasmere. And don’t forget… there’s a week of Countdown deal on each of Far from the Spaceports and Timing!

Embleton Bay (and an extract from Far from the Spaceports)

Dunstanburgh Castle, from Embleton Bay
Dunstanburgh Castle, from Embleton Bay

Last weekend I was up in Northumberland, and on the last day – Sunday – visited Embleton Bay. The last time I was here I was walking the Northumberland coastal path, heading north towards Lindisfarne. This time it was just a short walk along the beach, and for some of the family, a splash in the sea.

Embleton Bay is one of the many scallop shaped dips in the northeast coastline. It is low, with dunes on the landward side rather than cliffs, and the view to the south ends with the splendid ruins of Dunstanburgh Castle, dark against the vivid blue sky.

Embleton Bay, looking south
Embleton Bay, looking south

Embleton Bay happens also to be the location of one of the flashback scenes in Far from the Spaceports. Here, we meet Mitnash and Shayna camping (in what is admittedly a very high-tech tent), before Mit gets sent offworld to the asteroids called The Scilly Isles. Looking at the view last Sunday, it was not too difficult to imagine the two of them pitched here on the border between dunes and beach. It was a last opportunity to enjoy each other’s company – and in Mit’s case, the delights of open air and water – before being parted. I’ve added an extract below…

Shayna has probably had the thin end of the story so far, but as and when I write the third book in the series, provisionally called The Authentication Key, she should get more narrative attention!

And just to keep the Northumberland theme going, here’s Mark Knofler from YouTube, with a rather different mood than his better known riffs…


And here’s the extract…

I was away in the Northumbrian national park, walking the Bernician Way with nothing but one of the recent model v-tents and Shayna. Neither of us were at all interested in walking long-distance footpaths, but we both liked the absence of neighbours. A couple can make a lot of noise out in a national park, without thinking someone else might be disturbed.

But there it was, that morning, the message alert blinking silently on my shirt lapel where I’d discarded it for swimming in the North Sea last night, almost hidden by Shayna’s NuFleece. She might not like long distance walking, but she loved the prospect of skinny-dipping in sea water not far above freezing, and then thinking of inventive ways to warm up. That was so much easier when you could come out of the water and straight into a v-tent micro environment set at whatever climate you wanted. Right now we were in a Middle Egyptian May – temperature, humidity, everything.

Shayna liked to say that the chosen location was part of her genetic heritage, and she was in search of her roots. I was never sure about that, but I had no great preference myself. She had configured it just as soon as I had set the tent up, and it had taken under a minute to climatise itself.

So all through the night, with a North Sea winter gale blowing up and down outside, there we were in the Valley of the Kings. You didn’t mind so much going into cold water with all that warmth waiting. We’d polarised the fabric, silver from the outside and clear from the inside, and we lay together watching the half moon slide in and out of the curving clouds.

We’d arrived at low water, but I’d pitched the tent well up the beach, on a strip of pale sand between some levels of flat rock. High tide was in the early hours of the morning, and the waves had washed close up against us in the cosy dark.

I scowled at the lapel badge, wondering if there was any way to pretend I had not seen it. There wasn’t, not really. Slate would have acknowledged receipt of the incoming at the same time as redirecting it, and would have tagged its reception with all kinds of logging. It was far too late for me to try hacking anything. The real question was whether I could get away with avoiding it for more hours than I had already, but I already knew the answer to that one as well.

I tapped the lapel, and listened to the message sullenly. Recalled to London… first opportunity… Twelve hour SLA. I sighed, and entered the release commit. Slate would do the rest for me. Then I turned to look at Shayna. There she was in the morning light: brown skin enjoying the warm air, dark hair spilling over the pillow, and dark eyes opening with an air of frustration as she saw me working the lapel.

“I suppose you’re going to say there’s no more holiday now.”

I nodded.

“Recall at first available. Back to London for me.” I paused. “You could stay here?”

“Oh, Mit. Where’s the fun in that?”

She closed her eyes again briefly, but I could see the little muscle movements in her face as she interrogated her Stele. Rocky, she called him, and he was male in persona as well as voice. It was fair enough: Slate was undeniably female.

“We have three hours before the east coast express stops at Alnmouth. A quarter hour to pack up, half an hour to Craster, quarter hour transfer. That gives us another swim and time to warm up again afterwards.”

I loosened a vent a notch or two, listened to a sudden gust of wind, imagined what the air and water would be like.

“We could miss out the swim and just stay warm?”

She reached past me and tapped the door release, inviting the gust inside the tent where it contended unsuccessfully with the thermal regulation.

“Wherever it is they are going to send you now, you won’t have water like this. Out you go and enjoy it one more time.”

I shook my head, but got out and stood up anyway, naked in all that volume of cold rushing air. The tide had fallen again, and the sea froth was a little way down the beach. Shayna pushed past me and ran, arms waving above her head, shrieking with excitement as the wildness of the wind encircled her soul. I followed on, but she reached the water well before me, and threw herself in to the tumble of the waves.

Twenty years ago I would never have done this, but things had changed. Anyway, she was right: wherever I was going, it wouldn’t have wind and waves like this. I followed her.

It had been a long day. An icy bathe first thing in Embleton Bay, followed by Egyptian warmth. Then down to London for the first briefing, and some intense training sessions on commodities. Slate had uplinked a whole library of reading material on the subject, from finding the stuff right through to trading it. But I stopped at the point of trading, and even today I have very little idea how rare earths are actually used. But by the end of the journey I would sound totally convincing on the important parts of the subject. Finally, a second briefing with Elias, and a scramble to Euston to catch the overnight to Findhorn.

I had intended to gaze forlornly out of the window as I hurtled past Alnmouth again, this time heading north. However, fatigue had got the better of me and I was dozing at the time, propped up in a corner. I surfaced again somewhere well north of Dundee, just as it was getting light. On the east coast line, most of the trains stopped in Edinburgh, but this was the Spaceport Special, non-stop right the way through.

 

A first Audiobook review, plus… British Spaceports

Audiobook cover
Audiobook cover

This week I saw the first review of the Audiobook version of Half Sick of Shadows, and very pleasing it was too: “Half Sick of Shadows… takes Tennyson’s “Lady of Shallott” and gives it a speculative twist, keeping the measure and wonder of the original, but suggesting a plausible (perhaps) root to the story, in the vein of Jules Verne. The writing is lovely, in Richard’s mature and manly style, and with obvious care. The narration in the audio version by Menna Bonsels has a lovely Welsh lilt that brings the setting alive“.

And if you wanted to set up an Audible account, I suspect that Amazon’s Prime Day is a good time to do it. You can use it out for free for a trial period, get yourself Half Sick of Shadows as your first listen, and see how you like it. Links are Audible UK or Audible US, and here is the free sample…

Far from the Spaceports cover
Far from the Spaceports cover

Now, in Far from the Spaceports I presumed that there would be a spaceport in the British Isles. From there, Mitnash would catch some sort of shuttle to make the trip up to his deep-space vessel, the Harbour Porpoise.

Finally, a second briefing with Elias, and a scramble to Euston to catch the overnight to Findhorn.

I had intended to gaze forlornly out of the window as I hurtled past Alnmouth again, this time heading north. However, fatigue had got the better of me and I was dozing at the time, propped up in a corner. I surfaced again somewhere well north of Dundee, just as it was getting light. On the east coast line, most of the trains stopped in Edinburgh, but this was the Spaceport Special, non-stop right the way through.

Catching the shuttle was slightly less exciting than boarding the train at Euston…

Now, at the time of writing there were several sites being considered, several of them in Scotland. So I picked the Findhorn peninsula, and assumed that our current East Coast railway line from London via York, Newcastle and Berwick up to Edinburgh, would simply be extended northwards around the Cairngorms to give a high-speed link.

Artist's impression, Sutherland Spaceport (The National Scot)
Artist’s impression, Sutherland Spaceport (The National Scot)

This week, however, I saw two news items indicating different sites. One is indeed in Scotland, but right up at the extreme north coast. The plan for Sutherland is specifically for a vertical take-off site, in the way we have become used to see rocket launches. The development would mean a lot for local employment and development, but will be balanced against environmental concerns. Follow this up in The National Scot newspaper.

Artist's impression, satellite launched from winged booster (Cornwall Live)
Artist’s impression, satellite launched from winged booster (Cornwall Live)

But at the other end of the country, Newquay in Cornwall has been chosen by Virgin Orbit as a launch site. Here, the initial plan is for horizontal launch – a satellite with booster rocket is first carried to high altitude on a winged craft which takes off and lands conventionally (check out the video below). This certainly makes the transition from airport to spaceport easier, and leaves vertical launches open as an option in the future. Follow this one up at Cornwall Live, or (perhaps more excitingly) at Pirate FM.

It’s great for storytelling – but it’s also great for the space industry in the UK. We make a lot of space equipment here, especially in Glasgow and the home counties, but in order to actually launch it we’ve had to ship the finished products to launch sites in other parts of the world. Hopefully, by 2020 we might be launching from home soil. Mitnash may well be able to take the train from London to his shuttle launch site before much longer, though it might be a bit further north than Findhorn!

AI in space… or, how close are we to Slate?

There has been a whole bundle of space news this week – so much, in fact, that I had to temporarily postpone my series of going through how the different planets have been portrayed in fiction. Instead, I picked a couple of key stories which most appealed.

The western side of Cerealia Facula, from an altitude of about 21 miles (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
The western side of Cerealia Facula, from an altitude of about 21 miles (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

The first – and much the shorter – is to do with the Dawn space probe. Readers may remember that a few months ago, the decision was taken to use the remaining fuel to lower the orbit as far as safely feasible. This means better images (and results from other instruments) as the orbit now goes down as low as about 20 miles. The first pictures have started to appear, and very striking they are, and over the next few months I expect that we’ll be hearing a lot more about the surface chemistry. The first approach to Ceres revealed enigmatic bright spots on the surface (known as faculae), which are now recognised as salty deposits of carbonates – the largest such deposits away from the Earth, in fact. But do they ooze up through cracks and fissures from deep underground, or is there a reservoir of brine just below the surface? It is possible that the new low orbit wil shed light on this.

But the main story-telling event of interest was part of the contents of the Soyuz shuttle which docked with the ISS a little while ago. As well as three crew and a bunch of science experiments, a mobile AI called CIMON (Crew Interactive MObile Companion) arrived…

CIMON - the first AI crew assistant for spaceflight crews (Airbus/NASA)
CIMON – the first AI crew assistant for spaceflight crews (Airbus/NASA)

CIMON is powered by the IBM Watson software, has a digital “face”, and is capable of interacting with the Station crew via facial expressions, emotions, and voice.  Excitingly – so far as I am concerned – CIMON is European in origin, having been developed by Airbus. The enclosing shell was 3d printed, and weighs about 5kg (which only matters if it collides with something, as the ISS is routinely in microgravity). It wil remain free-flying and able to navigate to the various parts of the ISS at need.

CIMON has several purposes – first, it gives the internal neural networks plenty of new material to learn from, but the intention is that the crew will work with the AI to find collaborative solutions to problems. The science objectives are listed as:

The Pilot Study with the Crew Interactive MObile companioN (Cimon) is a technology demonstration project, and an observational study, that aims to obtain the first insights into the effects on crew support by an artificial intelligence (AI), in terms of efficiency and acceptance during long-term missions in space. Spaceflight missions put the crew under a substantial amount of stress and workload, and it is thought that AI could provide operational support to crew members.

So although CIMON can certainly provide early warning of particular categories of technical problems, and will assist with a number of predefined experiments, the goal is to provide social interaction.

Far from the Spaceports cover
Far from the Spaceports cover

Which brings me, naturally, to Slate! Slate, the main persona AI in Far from the Spaceports, is several generations of AI beyond what we enjoy today. Voice assistants like Alexa, Google Home, Siri, Cortana and so on are currently Earth-tethered in the sense that the software and database needed to comprehend and respond to a user’s request lives in cloud-based servers here on the planet. Even a trip to the moon (just over a second light signal time each way) would seriously strain conversational ability, and a trip out to the asteroids – say half an hour signal lag – is entirely out of the question. I don’t know whether CIMON relies on Earth-based data to understand what the astronauts will say, or whether a data source has been uploaded to the ISS itself. Keeping tethered to Earth would certainly be feasible at the ISS orbital height – but to go further afield we will need to crack the problem of large-scale localised data storage (maybe using DNA?).

I’ve never committed to an exact year for the events of Far from the Spaceports or Timing, but my feel is something like a century. I feel that probably I have been a little too cautious with this, and that in reality there’s a fair chance that AI having close to Slate’s capabilities could be around within my lifetime. On the other hand, my guess is that human colonies out at and beyond the asteroids won’t be around for a few years after my guess, so maybe it evens up!

Meanwhile, here’s a YouTube video (at https://youtu.be/KnpJI3WeiBg for those getting this through email) showing part of CIMON’s development…

 

 

Planet 9?

Another space blog post today, complete with some thoughts about life out there, and an extract from my work-in-progress The Liminal Zone.

First, though, the elusive Planet 9. For some time now, astronomers and space scientists have been speculating that an additional planet, of considerable size, lies out beyond Pluto. The evidence is indirect, in that such a planet has not been observed via telescope. Hence the matter is currently unresolved. But a recent paper argues that its presence would solve several unexplained issues, while its absence would create several more.

Orbital resonance in the moons of Jupiter (Wiki)
Orbital resonance in the moons of Jupiter (Wiki)

So what are the problems? Essentially, they come down to the logic of orbital dynamics, which says that you can’t just put a bunch of planets in random orbits around a star and expect them to be stable. Even though the gravitational attraction between two planets is small, it nevertheless exerts a steady regularising influence on the two paths around the sun. So the orbits of our sister planets show all kinds of patterns of ratios which at first sight seem remarkable (they’re still remarkable when you take gravity into account, but in a different way). And the more patterns that you see, the more you can infer about things you can’t see.

This, for example, is how the outer planets beyond Saturn were deduced before they were observed. The planets from Saturn inwards have been known since prehistory. But when careful observations with a telescope could be made, small but noticeable perturbations in their tracks were found. These pointed to the existence of unknown planets further out. The same principle explains why the orbits of Neptune and Pluto are synchronised – two of Pluto’s orbits match 3 of Neptunes. So, although Pluto dips inside Neptune’s orbit for a couple of decades every 248 years (one Pluto year), they are never at risk of colliding. These synchronisations happen all over the place – for example within the moon systems of Jupiter and Saturn, within the asteroid belt, or forming the delicate internal patterns of Saturn’s rings.

Now, Pluto is the first major body in the Kuiper Belt, a disc of space outside Neptune which we now know contains a decent number of small asteroids and similar objects. So it starts around 30AU from the Sun (AU = Astronomical Units, the distance between Earth and Sun). But it then Belt stops, quite abruptly, around 50AU. Why should this be? Why not feather off gradually?

Trans-Neptunian Object orbits (LIve Science / ESO)
Trans-Neptunian Object orbits (LIve Science / ESO)

Additionally, as we have built up a catalogue of these asteroids, a picture is emerging in which a surprising number have orbits around the sun which are aligned with each other. The simplest way to explain this is to suppose that some sizeable, but as yet unknown, object is synchronising them.

So, why has it not yet been found? Well, first of all, as Douglas Adams said, space is “vastly, hugely, mind-bogglingly big” (Hitchhiker’s Guide to the Galaxy, chapter 8). So although the potential planet is several times larger than the Earth, it is on average 20 times further from the sun than Neptune is – 600AU – with an orbit that is quite noticeably elliptical rather than circular. That means that there is a lot of space to search in, and also that it is dark and cold out there. There is not a lot for optical or infrared telescopes to detect. But each new discovery helps narrow the search window down, and some lucky group of astronomers may well announce a discovery soon.

Or, of course, not. It may be that the apparent alignment we see will be eroded by more observations. Which would be a bit of a shame, in that it is always nice to have unknown things to discover. It would also leave several other problems unresolved. Other things being equal, I’d like Planet 9 to be found!

Artist's impression, Planet 9 (Live Science / JPL-CalTech)
Artist’s impression, Planet 9 (Live Science / JPL-CalTech)

So, what might it be like to live there? For one thing, cold and dark. Our sun is still the nearest and brightest star by a huge margin. But at 20 times further away than Pluto, it gets just 1/400 of the solar radiation of any kind. Or if you like, 0.0003% of what we enjoy on Earth. You’d want to know you had reliable sources of heat and light, if you went there. And it will take a long time to get there. It is not a place for a quick jaunt. For reference, Voyager 1 is a little over 100AU from Earth and has spent about 40 years getting there.

Could there be indigenous life out there? Well, life as we know it depends on liquid water, and the surface of Planet 9 is way too cold for that. But possibly, there could be subsurface heat turning ice into water at some depth? Or perhaps, there might be a moon which would be subject to gravitational flexing, just as happens to the inner moons of Jupiter and Saturn. This could – maybe – provide enough heat to give us water. We’ll have to wait and see.

I haven’t yet written anything going that far out from the sun. In the universe of Far from the Spaceports, an Earth-Mars trip takes a couple of weeks. An Earth-Pluto trip takes a few months. An Earth-Planet 9 trip would take anywhere from seven or eight months up to just over a year, depending on whereabouts in its orbit it happens to be. Not a journey you’d make lightly.

The Liminal Zone (temporary cover)
The Liminal Zone (temporary cover)

The Liminal Zone takes place on Charon, the main moon of Pluto. The New Horizons probe returned some fascinatingly detailed pictures to us of these two, transforming them from hazy blobs to detailed worlds. New Horizons is currently en route to an object further out in the Kuiper Belt, 2014 MU69, popularly known as Ultima Thule, and is due to arrive early next year. Finding a second destination more-or-less on the flight path after Pluto was a remarkable thing in itself, as objects are so exceedingly thinly spread out there. Anyway, The Liminal Zone is not a financial fraud book like Far from the Spaceports or Timing – it’s more of a voyage of discovery, both personally for the main character, Nina, and more generally for the society she is part of. So here is a short extract – Nina is talking to Percy, one of the Charon residents, about events surrounding an emergency several years ago…


Something about his expression made Nina stop.
“But you didn’t actually see anything?”
He drew back a little.
“Seeing’s not everything. Haven’t you ever just known something for sure?”
His eyes held hers, suddenly very intense, and she felt a little internal quaver run through her body. She had hoped it wouldn’t show, but then she saw the trace of a smile cross his eyes.
“I’ve got Welsh blood, you know. It helps me comprehend things which maybe can’t be seen with the naked eye. And what about you, Nina? Where do you come from?”
She went blank.
“I grew up in Lacus Gaudii. On the Moon.”
He shook his head.
“Not that recent. Go back a few generations. Where did your family live? Before they came up to settle in that lunar lake of yours.”
The noise of the kettle was maddening. She withdrew inside herself, trying to escape the pressure.
“I… I don’t know. I suppose I could find out. It’s never mattered.”
He looked away, letting the moment pass.
“Ah, but it just might make a difference here.”
She took a long breath and tried again.
“But did you actually see anything?”


I’ll be posting more on progress into The Liminal Zone as it comes along…

Where would be a good place to live?

Cover - Perelandra (Goodreads)
Cover – Perelandra (Goodreads)

It’s a question which besets many science fiction writers! Now, in the former days of the 20th century, when not nearly so much was known about other star systems, writers were free and easy with their destinations. C.S. Lewis, who anyway had other motivations in his writing than script scientific accuracy, cheerfully placed parts of his science fiction trilogy on Mars and Venus. E.E. (Doc) Smith had alien habitations all over the solar system, with a wild array of biological adaptations to high gravity, strange atmospheres, or whatever. And when writers got their characters out of the solar system into the galaxy at large, the diversity just kept on growing (except for those authors like Asimov, who for various reasons carefully avoided alien life altogether).

But these days we have a vast amount of data to steer our fiction. In some cases this means that environments get excluded – it would be a brave author indeed who would place a novel like Perelandra on the surface of Venus these days (unless they have a back-story of extensive terraforming). On the other hand, new opportunities for life in previously unconsidered places have emerged – like high up in the Venusian atmosphere, or in liquid oceans underneath the ice coatings of various outer system moons. These are not likely to be, as they say, life as we know it…

Schematic of habitable zone sizes (Penn State University)
Schematic of habitable zone sizes (Penn State University)

On a wider scale, we have a good idea what to look for as regards planets that might support life. Most thinking on the subject supposes that liquid water would be necessary – it’s just too useful a chemical in all kinds of ways to see how it wouldn’t participate in life’s chemistry. So we can plot the Goldilocks Zone for any given star (too close in, and water boils and evaporates… too far out, and it freezes)… but we know from our own solar system that this does not cover all the bases. Close-in planets are probably tidally locked to their sun, and so have a cooler side. Far-out planets may well have orbiting moons with sub-surface water, kept from freezing by a variety of factors.

Back in the day, people used to look for stars relatively similar to our own sun, on the grounds that we kind of knew what we were looking for. But these days, following the extraordinary success of planet-hunting space missions like Kepler (soon to be followed by TESS), we know that many planets circle dim red dwarf stars. For sure, the heat output is much less, but that just means that the Goldilocks Zone huddles close in. And red dwarf stars are immensely long-lived, which gives life time to develop. On the other hand, many red dwarfs also go through erratic flare cycles, potentially blasting their associated planets with X-rays. But for my money, the first place we may find life elsewhere is likely to be circling a red dwarf.

So from the writer’s point of view, it’s a great time to be postulating life elsewhere, but also a rapidly-changing one. New data is pouring in, and new ways of analysing and comprehending that data. It all adds up to a wealth of new ideas and imaginative leads…

Artist's impression, planets discovered by TRAPPIST orbiting a red dwarf star about 40 light years from Earth (NASA/JPL)
Artist’s impression, planets discovered by TRAPPIST orbiting a red dwarf star about 40 light years from Earth (NASA/JPL)