Category Archives: Timing

About a podcast

Absolute Business MIndset podcast logo

A short blog today as I get back into blog writing after a very busy Easter. And it’s something a little bit different for me – a friend and former work colleague interviewed me for his podcast series over the weekend, and it has now gone live.

Now, I’ve never really got into podcasts, and Marks’ normal focus for his series is to do with business (as you can tell from his series title, Absolute Business Mindset), but we both managed to make something of the interaction.

Different people use different podcast software, but this site
https://gopod.me/1340548096 gives you a list of different options through which you can access the interview. Alternatively, search for Mark’s series by its title, Absolute Business Mindset.

In it, you can hear me talking with Mark about all kinds of stuff, largely focused around maths, artificial intelligence, Alexa and so on, ultimately touching on science fiction. The whole thing takes about an hour, and Alexa takes more of a central role in the second half. Enjoy!

Artificial Intelligence – Thoughts and News

My science fiction books – Far from the Spaceports and Timing, plus two more titles in preparation – are heavily built around exploring relationships between people and artificial intelligences, which I call personas. So as well as a bit of news about one of our present-day AIs – Alexa – I thought I’d talk today about how I see the trajectory leading from where we are today, to personas such as Slate.

Martian Weather Alexa skill web icon
Martian Weather Alexa skill web icon

Before that, though, some news about a couple of new Alexa skills I have published recently. The first is Martian Weather, providing a summary of recent weather from Elysium Planitia, Mars, courtesy of a public NASA data feed from the Mars Insight Lander. So you can listen to reports of about a week of temperature, wind, and air pressure reports. At the moment the temperature varies through a Martian day between about -95 and -15° Celsius, so it’s not very hospitable. Martian Weather is free to enable on your Alexa device from numerous Alexa skills stores, including UK, US, CA, AU, and IN. The second is Peak District Weather, a companion to my earlier Cumbria Weather skill but – rather obviously – focusing on mountain weather conditions in England’s Peak District rather than Lake District. Find out about weather conditions that matter to walkers, climbers and cyclists. This one is (so far) only available on the UK store, but other international markets will be added in a few days.

Who remembers Clippy?

Current AI research tends to go in one of several directions. We have single-purpose devices which aim to do one thing really well, but have no pretensions outside that. They are basically algorithms rather than intelligences per se – they might be good or bad at their allotted task, but they aren’t going to do well at anything else. We have loads of these around these days – predictive text and autocorrect plugins, autopilots, weather forecasts, and so on. From a coding point of view, it is now comparatively easy to include some intelligence in your application, using modular components, and all you have to do is select some suitable training data to set the system up (actually, that little phrase “suitable training data” conceals a multitude of difficulties, but let’s not go into that today).

Boston Dynamics ‘Atlas’ (Boston Dynamics web site)

Then you get a whole bunch of robots intended to master particular physical tasks, such as car assembly or investigation of burning buildings. Some of these are pretty cute looking, some are seriously impressive in their capabilities, and some have been fashioned to look reasonably humanoid. These – especially the latter group – probably best fit people’s idea of what advanced AI ought to look like. They are also the ones closest to mankind’s long historical enthusiasm for mechanical assistants, dating back at least to Hephaestus, who had a number of automata helping him in his workshop. A contemporary equivalent is Boston Dynamics (originally a spin-off from MIT, later taken over by Google) which has designed and built a number of very impressive robots in this category, and has attracted interest from the US military, while also pursing civilian programmes.

Amazon Dot - Active
Amazon Dot – Active

Then there’s another area entirely, which aims to provide two things: a generalised intelligence rather than one targeted on a specific task, and one which does not come attached to any particular physical trappings. This is the arena of the current crop of digital assistants such as Alexa, Siri, Cortana and so on. It’s also the area that I am both interested in and involved in coding for, and provides a direct ancestry for my fictional personas. Slate and the others are, basically, the offspring – several generations removed – of these digital assistants, but with far more autonomy and general cleverness. Right now, digital assistants are tied to cloud-based sources of information to carry out speech recognition. They give the semblance of being self-contained, but actually are not. So as things stand you couldn’t take an Alexa device out to the asteroid belt and hope to have a decent conversation – there would be a minimum of about half an hour between each line of chat, while communication signals made their way back to Earth, were processed, and then returned to Ceres. So quite apart from things like Alexa needing a much better understanding of human emotions and the subtleties of language, we need a whole lot of technical innovations to do with memory and processing.

As ever, though, I am optimistic about these things. I’ve assumed that we will have personas or their equivalent within about 70 or 80 years from now – far enough away that I probably won’t get to chat with them, but my children might, and my grandchildren will. I don’t subscribe to the theory that says that advanced AIs will be inimical to humankind (in the way popularised by Skynet in the Terminator films, and picked up much more recently in the current Star Trek Discovery series). But that’s a whole big subject, and one to be tackled another day.

Meanwhile, you can enjoy my latest couple of Alexa skills and find out about the weather on Mars or England’s Peak District, while I finish some more skills that are in progress, and also continue to write about their future.

Mars Insight Lander, Artist’s impression (NASA/JPL)

Emotions

Far from the Spaceports cover
Far from the Spaceports cover

In my science fiction stories, I write about artificial intelligences called personas. They are not androids, nor robots in the sense that most people recognise – they have no specialised body hardware, are not able to move around by themselves, and don’t look like imitation humans. They are basically – in today’s terminology – computers, but with a level of artificial intelligence substantially beyond what we are used to. Our current crop of virtual assistants, such as Alexa, Cortana, Siri, Bixby, and so on, are a good analogy – it’s the software running on them that matters, not the particular hardware form. They have a certain amount of built-in capability, and can also have custom talents (like Alexa skills) added on to customise them in an individual way. “My” Alexa is broadly the same as “yours”, in that both tap into the same data store for understanding language, but differs in detail because of the particular combination of extra skills you and I have enabled (in my case, there’s also a lot of trial development code installed). So there is a level of individuality, albeit at a very basic level. They are a step towards personas, but are several generations away from them.

Now, one of the main features that distinguishes personas from today’s AI software is an ability to recognise and appropriately respond to emotion – to empathise. (There’s a whole different topic to do with feeling emotion, which I’ll get back to another day). Machine understanding of emotion (often called Sentiment Analysis) is a subject of intense research at the moment, with possible applications ranging from monitoring drivers to alert about emotional states that would compromise road safety, through to medical contexts to provide early warning regarding patients who are in discomfort or pain. Perhaps more disturbingly, it is coming into use during recruitment, and to assess employees’ mood – and in both cases this could be without the subject knowing or consenting to the study. But correctly recognising emotion is a hard problem… and not just for machine learning.

From the article ‘Emotion Science Keeps Getting More Complicated. Can AI Keep Up? ‘ by Dr Rich Firth-Godbehere

Humans also often have problems recognising emotional context. Some people – by nature or training – can get pretty good at it, most people are kind of average, and some people have enormous difficulty understanding and responding to emotions – their own, often, as well as those of other people. There are certain stereotypes we have of this -the cold scientist, the bullish sportsman, the loud bore who dominates a conversation – and we probably all know people whose facility to handle emotions is at best weak. The adjacent picture is taken from an excellent article questioning whether machines will ever be able to detect and respond to emotion – is this man, at the wheel of his car, experiencing road rage, or is he pumped that the sports team he supports has just scored? It’s almost impossible to tell from a still picture.

From a human perspective, we need context – the few seconds running up to that specific image in which we can listen to the person’s words, and observe their various bodily clues to do with posture and so on. If instead of a still picture, I gave you a five second video, I suspect you could give a fairly accurate guess what the person was experiencing. Machine learning is following the same route. One article concerning modern research reads in part, “Automatic emotion recognition is a challenging task… it’s natural to simultaneously utilize audio and visual information“. Basically, the inputs to their system consist of a digitised version of the speech being heard, and four different video feeds focusing on different parts of the person’s face. All five inputs are then combined, and tuned in proprietary ways to focus on details which are sensitive to emotional content. At present, this model is said to do well with “obvious” feelings such as anger or happiness, and struggles with more weakly signalled feelings such as surprise, disgust and so on. But then, much the same is true of many people…

A schematic learning network (from www.neuroelectrics.com)

A fascinating – and unresolved – problem is whether emotions, and especially the physical signs of emotions, are universal human constants, or alternatively can only be defined in a cultural and historical context. Back in the 1970s, psychological work had concluded that emotions were shared in common across the world, but since then this has been called into question. The range of subjects used for the study was – it has been argued – been far too narrow. And when we look into past or future, the questions become more difficult and less answerable. Can we ever know whether people in, say, the Late Bronze Age experienced the same range of emotions as us? And expressed them with the same bodily features and movements? We can see that they used words like love, anger, fear, and so on, but was their inward experience the same as ours today? Personally I lean towards the camp that emotions are indeed universal, but the counter-arguments are persuasive. And if human emotions are mutable over space and time, what does that say about machine recognition of emotions, or even machine experience of emotions?

One way of exploring these issues is via games, and as I was writing this I came across a very early version of such a game. It is called The Vault, and is being prepared by Queen Mary University, London. In its current form it is hard to get the full picture, but it clearly involves a series of scenes from past, present and future. Some of the descriptive blurb reads “The Vault game is a journey into history, an immersion into the experiences and emotions of those whose lives were very different from our own. There, we discover unfamiliar feelings, uncanny characters who are like us and yet unlike.” There is a demo trailer at the above link, which looks interesting but unfinished… I tried giving a direct link to Vimeo of this, but the token appears to expire after a while and the link fails. You can still get to the video via the link above.

Meanwhile, my personas will continue to respond to – and experience – emotions, while I wait for software developments to catch up with them! And, of course, continue to develop my own Alexa skills as a kind of remote ancestor to personas.

Timing Kindle cover
Timing Kindle cover

Future life in space

Two quick bits of space news this week that – all being well – could make their way into a story one day.

Prototype of steam-propelled space probe (University of Central Florida, via Independent.co.uk)

The first was an idea of powering space probes by steam. Now, at first read this sounds very retro, but it deserves some thought. In space, you can’t move along by means of steam pressure turning wheels – there is nothing against which to gain traction. Steam-propelled rockets work like any other rocket – something gets ejected at great speed in one direction, so as to accelerate the rocket in the opposite direction. The steam engine part of the probe is a means of converting the fuel supply into something that can be directed out of the thruster nozzle. The steam, heated as hot as possible to give a high nozzle exit temperature, is the propellant.

The cool thing about pushing steam out of the back, is that it comes from water, and in particular ice. And, as we have been discovering over the last few decades, water ice is extremely common throughout the solar system, and more widely through the universe. So as and when the steam-powered spaceship starts to run low on fuel, it can land on some promising object and collect some more ice. The fuel supply, while not strictly unlimited, is vastly common wherever we’re likely to go. As and when needed, solar panels or (further from the sun) a standard radioactive decay engine can give a boost, but the steam engine would do the grunt work of getting from one refueling station to the next.

Is there wine on Mars? (JPL/Caltech via livescience.com)

Secondly, pursuing my occasional theme of alcohol in space, I read about a firm from Georgia (the country, not the US state) that wants to develop grape varieties that would survive on Mars and, in due course, be convertible into decent wine. This would be a serious challenge, given the low air pressure, high carbon monoxide levels, and wide temperature swings of said planet. As a rough rule of thumb, the air at the Martian surface is about the same as at 20,000′ here on Earth. Apparently, white varieties are reckoned to be more adaptable than red, but I suspect that we are a little way away from resounding success here.

Other attempts to ensure that future space travellers will not have to go without booze include Budweiser sending barley seeds into space to identify the effect of microgravity on germination, steeping and kilning – three steps in the production of malt. See this link. Allegedly, also, a bottle of Scotch Whisky spent three years on the ISS before returning to Earth for analysis… the resulting taste was said to be disappointing. I hope the ISS crew got a few measures out of the bottle before sending it back down again.

That’s it for today, except to wonder again how each of these ideas could be storified. My own near-future science fiction books assume an advanced version of today’s ion drives for propelling spacecraft, but there’s no reason why steam propulsion might not appear as a previous experiment. As to wine in space, well I have already assumed that the problems of fermenting beer in microgravity have been resolved, so again this would have to be a retrospective view of historical developments. Basically, both of these innovations are set between today and my own future world. So I’m looking forward to seeing how they get sorted out in the next decade or two…

Laws, qualifications, and the drinking of alcohol

University of Cumbria at Barrow - where I took the course
University of Cumbria at Barrow – where I took the course

I heard today that I had passed the study element of a Personal Alcohol Licence, which (after I have gone through a police background check and a few other formalities) allows me to authorise the sale of alcohol in England and Wales. Not in Scotland, Northern Ireland, or indeed anywhere else in the world, but I guess you have to start somewhere.

Now, this is far from my most advanced academic qualification, but the intriguing thing about this one is that it legally entitles me to supervise – and therefore take legal responsibility for – the public sale of what is undoubtedly a kind of drug. Without the licence, I can work under someone else’s supervision, but cannot just set up and flog booze on my own account. With it, and subject to a bunch of other constraints, I can do just that.

You can imagine that a fair proportion of the material, and the final test, focused around UK law relating to drink. There are obvious things to do with the age of the drinker, but I also learned that it is a specific legal offence to sell alcohol to someone who (in the considered opinion of the seller) is already drunk. Too much like shooting fish in a barrel, I suppose. Most of the laws fit around common sense, though as with any body of legal material you are left a little perplexed as to why specific conditions were imposed.

Russian troops and Finnish smugglers, 1853 (Vasily Hudiakov, WIki)
Russian troops and Finnish smugglers, 1853 (Vasily Hudiakov, WIki)

Anyway, all this set me thinking about law and qualification. The government of the day, however it was decided, has for a very long time indeed decided that it is entitled to a certain proportion of the profits from various kind of sales – and alcohol has typically been way up the list. And of course where rulers try to enforce a ruler, some subjects will concoct cunning schemes to get around the additional expense – excise duty spawns groups of smugglers almost by definition. But you only risk smuggling goods where the financial equation makes sense – small, easily concealed items where the tax duty is high enough that you can pocket a decent cut for yourself, while still leaving the buyer feeling they have done very well out of the deal.

So customs duties, and the body of regulations which underpin them, have been around for millennia. And – typically – part of those regulations consists of ways to appoint specific individuals as those few who are allowed to make transactions. In days of old, one suspects that many of these appointments were based on nepotism or bribery… if you had the right connections, or could stump up enough starting cash, you could find yourself in a comfortable position and set up for life. Nowadays the process is rather more transparent, and the barriers to entry are very much lower.

The Jolly Sailor, Bursledon (www.jollysailoroldbursledon.co.uk)
The Jolly Sailor, Bursledon (www.jollysailoroldbursledon.co.uk)

But equally, things have been tightened up in other ways. A couple of hundred years ago, it was fairly common for ex servicemen to use their prize money, or sign-off pay, or whatever they had saved up, to buy a little inn somewhere, and make a tidy living brewing or distilling booze of widely varying quality, and plying locals with the results. (Any pub you find called the Marquis of Granby recalls charitable donations by this 18th century gentleman who donated money to wounded servicemen). Provided you could afford a small building and a few bits and pieces to do the fermentation, you could set yourself up, no questions asked. These days, you have to go through hoops like planning permission, health and safety, police, plus of course getting a premises licence. There are all kinds of reasons why an apparently sound business plan might be rejected by officialdom.

The ISS (NASA/JPL)
The ISS (NASA/JPL)

So that is looking back… but what about forwards? Right now the only human outpost we have away from the Earth is the ISS. It’s not very far away – about 400km above the surface of the Earth, less than the distance from one end of England to the other. And I don’t suppose that the occupants have much privacy or opportunity to set up fermentation or a distillery up there. Though I did hear today that Budweiser has funded one of the science experiments on board, seeking to improve strains of barley with increased resistance to environmental stress. So maybe next year someone wil fund a experiment to make beer up there and see how yeasts behave in microgravity!

Alexa Far from the Spaceports logo
Alexa Far from the Spaceports logo

But let’s assume that within the next couple of decades we have an outpost or two somewhere else – the Moon, say, or Mars, or even a privately operated space station. How likely is it that nobody will attempt to ferment fruit or vegetable juices? And whose laws will be applied to regulate such an operation? Now run the scenario on a few more years, into the solar system I imagine for Far from the Spaceports and its sequels. There are a decent number of scattered habitats, each separated from the others by at least days, often weeks, and sometimes months of travel time. It will, I suspect, become impossible to try to enforce some kind of uniform system of laws.

Alexa Timing logo
Alexa Timing logo

My guess is that each habitat will have its own local set of laws and customs – no doubt broadly consistent with each other, but differing in detail. Sure, you can send a message anywhere in the solar system within a day at most, but if you get a tip-off that the habitat on Charon is bootlegging some kind of moonshine drink that is not allowed on the Moon, it’s going to take your police three or four months to trek out there and investigate. Will they bother? In that kind of situation, I don’t think it is feasible to try to maintain a single unified system of laws and regulations. So now suppose I have trained for my personal alcohol licence here on Earth (which in fact I did), and then decide on a whim to travel out to Charon. Will a publican out there recognise my licence? Or will he or she make me study for a duplicate one, ending up with a signature of someone on Charon rather than Earth? Right now, in the present day, it is extraordinarily hard to transfer qualifications between countries in professions like teaching, nursing, psychotherapy, and so on – will things be any different when we’re scattered across a few dozen habitats? I suspect not, especially as my own new licence doesn’t even allow me to do stuff in Scotland!

All of which is why I like writing about that near-future band of time, when there is no Federation, no Galactic Empire, or whatever – only local enforcement of issues according to moral and social principles which makes sense to the occupants. I suspect the chief coordinating factor would be economic – if you felt that some particular habitat was doing things the wrong way, you wouldn’t trade with them. They would become isolated, and there’s nowhere in the solar system away from Earth that can actually be self-sufficient. Hence I write about economic and financial crime, as these are the things that seriously threaten lives and livelihoods.

Mars Insight lander and Elysium Planitia

A quick post today as I have been buried deep in coding web applications for Lake View Country House and its sister businesses. As an added bonus there will be an extract, this time from Timing.

Artist's impression, Insight on Mars (NASA/JPL)
Artist’s impression, Insight on Mars (NASA/JPL)

First though, the NASA Mars Insight lander. This is well on its way to Mars, and is due to touch down on November 26th (at around 3pm Eastern Time, or 8pm UK time). Landing on Mars has traditionally been a hazardous affair, and something like half of all probes sent there have not done so successfully. But things have improved recently, so let’s hope all goes well on 26th.

Now, Insight has a couple of primary science targets, both relating to the interior of the planet. One instrument will measure heat flow under the surface, and another will detect seismic changes – earthquakes if you like, though perhaps Marsquakes might be a better word. The overall intention is to get a better idea of what Mars is like once you probe below the dusty surface. To that end, various drills will work their way several metres down below wherever the probe ends up landing.

The site area on Elysium Planitia chosen for landing (NASA/JPL)
The site area on Elysium Planitia chosen for landing (NASA/JPL)

But it was the landing place that particularly caught my eye – a flat plain called Elysium Planitia, roughly straddling the equator. This was chosen for scientific reasons – it is mostly flat and has a suitable kind of surface layer for the instruments to work well. But interestingly, Elysium Planitia features in Timing (Far from the Spaceports Book 2) as the site for a developed, and particularly lively, habitat.

In that book, Mit and Slate visit a couple of places on Mars, as well as its tiny moon Phobos. Their first target is a training college close to the mountain Olympus Mons, and from there they move across to Elysium Planitia in order to meet an old adversary… who claims now to be an ally. The two sites are in stark contrast – the training college is austere and frankly dull (though helpful for Mit and Slate in deducing what has been happening), but Elysium Planitia is exciting to the point of excess… Insight will have a very staid experience in comparison…


The quayside at Elysium Planitia was busy and bustling, and didn’t exactly feel safe. I kept all my pockets sealed shut, held my bag in front of me all the time, and tried to stay alert. Slate had promised to keep a eye out for anybody trying to infiltrate at a virtual level. I was used to crowds in London, but they were well-behaved, in which individuals knew where they were going, and made a habit of slipping past each other without interaction. And, as Slate kept reminding me, I had been away from that environment for a considerable time now, and the various habitats I had visited more recently were comparatively empty. I was out of practice.

Here, there was a lot of intrusion into personal space. Men and women jostled past each other, and there was a sensory bombardment on every side, offering all kinds of goods and services. Nothing was free, and the price of the more personal interactions was, literally, astronomical.

The habitat was much the biggest one I had been to, making even the south lunar pole settlement look small. I focused on threading my way through the hustle, following Slate’s internal prompts for some distance from the dock towards a quieter, cheaper row of guest houses. All I wanted – all that Elias would expense for – was an economical, no-frills hideaway. All being well, I would be back to Phobos soon.

The place I selected had no human greeters, just an automated checkin service. I wasn’t paying enough to warrant a real person’s presence. Out in space, Slate had sighed about the frequent partings our job required. I was much more basic in my needs, and this was my complaint. I particularly loathed the need to keep staying in dingy soulless rooms.

My heart sank slightly when the welcome screen spiralled brightly coloured words at me: “We’re Like Vegas Used To Be! Only In Space! And Better!!” But the process of getting access to the room was easy to follow, and it didn’t take long. You just had to focus away from the vivid ads which pressed in from the edge of the screen just as soon as the system had decided that I was an adult.

Once I had successfully navigated that, I was given access to the room. It was secure and reasonably comfortable, and it got me off the streets well before the really busy evening time. I had no particular desire to just go wandering round in a fit of exploration. There was going to be quite enough excitement just meeting Jocasta tomorrow.

 

Dawn, death, and ion drives

Dawn takes off, September 27th 2007 (KSC/NASA)
Dawn takes off, September 27th 2007 (KSC/NASA)

Last week, NASA’s Dawn space probe, which first launched back in 2007, finally ran out of fuel and has been declared dead. Regular readers will know that Dawn has been a great source of information and inspiration for me as I have been creating the future world of Far from the Spaceports, Timing, and the in-progress The Liminal Zone. So it seemed fitting to me to do a kind of tribute to Dawn here.

So here’s a timeline of key events:

  • September 2007 — Launch
  • February 2009 — Mars Gravity Assist
  • July 2011 — Vesta Arrival
  • September 2012 — Vesta Departure
  • March 2015 — Ceres Arrival
  • June 2016 — End of prime mission
  • July 2016 — Start of first extension
  • November 2017 — Start of second extension
  • November 2018 — No remaining fuel: mission ends

Enhanced colour image of Ceres (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
Enhanced colour image of Ceres (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

Of course, Dawn is not going anywhere – it will remain in its current orbit around Ceres for decades at least, until some combination of inevitable gravitational perturbations distorts that orbit enough that it eventually crashes into the surface. But there will be no more navigation from Dawn, no more course correction, no more photos or science information.

I want to talk a bit about Dawn’s ion drive, in the connection of storytelling, but if you want pictures and information about the mission findings, the best place to start is the NASA site, which has separate pages for Vesta and Ceres.

So, the ion drive. Most craft up to now have used chemical rockets – two or more chemicals are stored separately, then mixed to form a high-energy burst of propulsion. For example, the latest SpaceX SuperDraco engine uses the two liquids nitrogen tetroxide and Monomethylhydrazine. The net effect is that the spacecraft is pushed with high acceleration in a particular direction. After this engine burn, the craft coasts with no further propulsion for days or months, until it’s time for another correction. Astronauts in the craft have to endure short periods of high g-forces, followed by long periods of weightlessness. The engine burns have to be very precisely calculated for direction, force, and duration, so as to minimise the need for subsequent burns. Once the fuel is gone, it’s gone, and each burn takes a fair proportion of the fuel stores.

Falcon Heavy launch, February 6th 2018 (SpaceX via Wikipedia)
Falcon Heavy launch, February 6th 2018 (SpaceX via Wikipedia)

What does this mean for storytelling? Well, most of the journey is spent at zero acceleration, coasting towards your destination without burning fuel, and without any sense of up or down. It took the Apollo astronauts about three days to get from the Earth to the Moon (and the same back again, after doing stuff on the lunar surface). As and when SpaceX or whoever sends another rocket there, it will still take about three days – the time taken is a result of the coasting period without power, not the force of the engine. And because of the long zero-gravity sections, you need to be fairly well-trained to manage this.

SpaceX 'Starman' orbit (SpaceX Twitter feed)
SpaceX ‘Starman’ orbit (SpaceX Twitter feed)

Now consider a trip to Mars. In February of this year, SpaceX launched a Falcon Heavy rocket, with payload of a Tesla car and suitable contents. It left Earth orbit and headed out on an orbit that goes out past Mars, but at a slight angle so that the two never intersect. Each orbit takes 557 days to complete, so at this point not even one has been finished. The payload – a Tesla car – passed by Mars orbit a few days ago, after about eight months.

The Hermes rocket from the film The Martian (http://the-martian.wikia.com)
The Hermes rocket from the film The Martian (http://the-martian.wikia.com)

Now, this rocket had not reserved enough fuel to slow down and enter Mars orbit – it was a vivid proof of concept for SpaceX, not a real attempt to land on the Red Planet. But basically, if a human crew does the same journey in the same rocket, it will take them about eight months to get there – eight months of zero gravity, unless rocket design changes to include a kind of pseudo-gravity produced by rotation, as in the Hermes spacecraft in The Martian.

Getting out into the solar system on chemical rockets just prolongs these figures. Potential astronauts have to cope with months, if not years, of isolation and low gravity. It is just not viable to send people there, which is why the present focus has been on sending hardware and instruments.

Schematic diagram of ion drive (NASA/JPL)
Schematic diagram of ion drive (NASA/JPL)

Enter the ion drive, as used on Dawn and a handful of other craft. It is, in some ways, the opposite of a chemical rocket. It produces small amounts of drive thrust continuously for a very long time. NASA estimates that the thrust of the engines on Dawn is roughly the same as what you feel when you hold a piece of paper on the palm of your hand. It’s quite useless for getting off the Earth’s surface – you really do need something powerful for that – but as a way to get you from Earth to Vesta… or Vesta to Ceres… From a standing start in free space, Dawn would take about four days to go from 0 to 60 mph. But that ion drive just keeps piling on speed. Dawn’s engine ran for a total of about 2000 days during the mission – over 5 years.

Artist's impression, Dawn at Ceres (NASA/JPL)
Artist’s impression, Dawn at Ceres (NASA/JPL)

Now, if you have an engine that is always-on, your whole picture of the solar system changes. Let’s suppose you keep accelerating to the mid point, then flip over and decelerate the rest of the way, so that you get to feel a constant gravity all the way. Then further is more efficient. In twice the time you can go four times the distance. Or, to put the same thing another way, to go twice the distance takes less than one and a half times the time.

Of course, Dawn’s motors were still early versions of the design, with a low thrust output even at maximum. For my stories, I’ve assumed that the design can be enhanced to give an acceleration equivalent to 1/20 of that at Earth’s surface – considerably less than what you get on the moon. It would take some getting used to, but it means that your body and brain have a clear sense of up and down, and all those physiological functions that need gravity have a good chance to keep going! What does this mean for travel time?

  • Earth to Mars takes between ten and twenty days, depending on their relative position at the time of launch
  • Earth to Ceres takes about 3 weeks
  • Earth to Pluto takes about three months

Timing Kindle cover
Timing Kindle cover

That works for storytelling – it’s not very different from journeys that people would take by sail back in the day. For example, an 18th century trip from England to India would take something like four to six months. Once the Suez canal was open, this reduced to about two months. People will put up with a journey like that for all kinds of reasons. So that’s roughly how you can imagine the solar system of my science fiction novels – a bit like our world was in the days of sail and early steam ships.

Here’s a short extract from Timing, in which journey time gets discussed a bit. Meanwhile, RIP Dawn!

Then, quite suddenly, I had been sent all the way to the Jovian system. That would have been fair enough after the local jobs, but it turned out to be a false alarm. One of the analysts thought he had seen a recurrence of an old scam, running out of the Callisto hub. So off we had gone – a long journey for both Slate and I, and when we left Earth orbit the planetary alignment meant there were no friendly stopovers to break the journey.

Once we got there, the two of us had poked around, wormed our way into this module and that, but found nothing. To be sure, we confirmed that the reported irregularities were real. We had easily managed to find the batch runs where the credit had gone missing, by comparing input and output. It happened every time a specific input value was missing or unreadable, and a default value had to be assumed. But the chosen default looked right and we couldn’t find root cause. The code was non-standard, and frustratingly weird, but there was nothing obviously suspicious. The logs were so skimpy as to be almost useless. It did not seem to be the kind of task that needed our skills, nor to be as much of a problem as the analyst had first thought.

When it was over, and having drawn a blank, we sent a summary report down to the Finsbury Circus office, suggesting that perhaps it would be more effective to send an accountant. We had managed to get four weeks out of the work, but it still felt like a long drag for not much return. To be fair, it was unusual for the analysts to make a mistake like that, so I was professionally polite rather than curt. Then it was time to warm up the engines of our sloop, the Harbour Porpoise, and off we set on the homeward leg.

I was all set for a boring journey back down the gravity hill to Earth, but Slate found an orbital option which would take us right past the Scilly Isles. That settled it. We deserved a reward for our fruitless diligence. So we changed the navigation plan, sent some messages ahead, and here we were. Elias, my manager back in London, had made a token protest at the diversion, but I told him that the Harbour Porpoise needed servicing and the delay was unavoidable.

Anyway, a couple of hours signal lag meant that we were already en route by the time his answer came back. We just said that we didn’t have enough reaction mass for such a radical course change. It might even have been true, though I was careful not to ask Slate for a technical analysis, and she was just as careful not to offer one.

Regardless of that, we weren’t minded to listen. Slate and I both reckoned that we deserved the break. Six weeks of voyage out to Callisto, and four weeks of fairly dull work had not made us receptive to a tedious trip straight back home again. It would mean nearly three months’ travel time for just one month of work, and we weren’t about to just put up with that without an argument.

Tesla Starman (SpaceX Twitter feed)
Tesla Starman (SpaceX Twitter feed)

Ultima Thule

Today’s blog is focused on the next target of the New Horizons probe, which back in July 2015 sent back such remarkable pictures of Pluto and Charon. But before that, here’s a quick reminder of this week’s Kindle Countdown deals for Far from the Spaceports and Timing – £0.99 / $0.99 for the next couple of days. Follow these links…

New Horizons route, including Pluto and Ultima Thule (Wiki)
New Horizons route, including Pluto and Ultima Thule (Wiki)

Right. New Horizons. After the Pluto flyby, the natural question was, what next? There was enough fuel and energy reserves to consider a small course change… but to what end? Pluto is at the inside edge of the Kuiper Belt, a tenuous and very sparsely populated volume of space. Over the last few years, we have been steadily gaining information about some of the contents, many of which have hugely elongated orbits. The big prize out there is the possibility of a really sizeable planet, acting as a gravitational shepherd to coax the smaller bodies into resonant patterns.

Planet 9 has not yet been found, but several smaller bodies have. And one of them, catalogue number KBO 2014 MU69 , happened to be well placed for New Horizons. So, an appropriate course change was made as Pluto dwindled into the distance, and KBO 2014 MU69 – now provisionally renamed Ultima Thule – became the next goal.

Current New Horizons view of Ultima Thule (NASA/JHUAPL/SwRI)
Current New Horizons view of Ultima Thule (small dot on right-hand frame) (NASA/JHUAPL/SwRI)

But distances out in the Kuiper Belt are large, so there has been a considerable wait. Ultima Thule is about 12% further away from Earth as Pluto is. The actual flyby will occur on January 1st next year, and at this stage we still don’t really know what to expect. The Hubble telescope orbiting Earth shows Ultima Thule as just a slowly moving point of light. New Horizons is about 33 million miles away from it – about 1/3 the Earth-Sun distance – and still can’t resolve it to more than just a point source. We cannot make out any surface detail. We don’t know if it’s roughly spherical, or irregular, or even a little cluster of fragments all moving together. Just about all we know is that it’s less than 40 km across, and although very dark by the standards we are used to in the inner system, is slightly more reflective than expected.

Artist's impression, New Horizons and Ultima Thule (Steve Gribben/NASA/JHUAPL/SwRI)
Artist’s impression, New Horizons and Ultima Thule (Steve Gribben/NASA/JHUAPL/SwRI)

After sending the Pluto and Charon data home, New Horizons went to sleep for a couple of years, with a wake-up call in June for some of the instruments and a course correction. It is now being prepared as best we can for the encounter. It’s a fascinating problem – light or radio signals take around 6 hours to cross the gulf between us and the probe, so there is no possibility of direct control.  Any reply takes another 6 hours to get back. The systems have to be set up in advance, according to our best guess of what will be there. The final course changes will occur in mid December, when the ground crew wil decide just how close to steer towards Ultima Thule. In one sense, the nearer the better… but the higher the risk that the probe will make brief, catastrophic contact with some fragment of rock and ice. On the day, the probe will whistle by at over 30000 km/h, so there’s no opportunity for second chances. Whatever sequence has been set up in advance, will be played out without modifications. After that, New Horizons will spend the better part of two years streaming the data back to Earth. So although the rendezvous will be a New Year treat, we shall have to wait a long time until we get any high-resolution images or other data.

As yet I haven’t written about what life might be like in a suitably protected environment out in the Kuiper Belt… maybe this encounter will be the seed of another book, in the way that the flyby past Pluto and Charon has contributed to The Liminal Zone. And here, just for a bit of fun, are someone’s first impressions of the settlement on Charon, extracted from the early sections of The Liminal Zone

Nina walked steadily along the winding curves of Lethe towards Asphodel. The house AI had finally told her where Lance’s quarters were situated in Acheron, and had transferred directions onto a hand-held to direct her there. From space, the overall shape of the Charon settlement had been clear – five sinuous linear habitats, following curves in the underlying terrain and joined radially to Asphodel. When you were actually down here, it wasn’t nearly so neatly divided. There were extra little corridors and alcoves which broke up the superficial symmetry, and little tunnels that dived underground and then resurfaced at unexpected places. She was glad that the little hand-held router buzzed faintly at junctions to tell her which way to turn.

Changes… and Kindle Countdown deals

A short post this week, mainly consisting of two extracts, one each from Far from the Spaceports and Timing. These are both on Kindle Countdown deals from this Friday, October 26th, for one week, price set at £0.99 / $0.99 depending which side of the Atlantic you’re on. More of that later… here are the extracts.

The main characters are Mitnash (Mit) and his AI persona partner Slate. in this extract, Mit and Slate are recovering from a difficult episode in which Slate was hacked by a shady individual known as The Wise Man…

Far from the Spaceports (follow this link)


Far from the Spaceports cover
Far from the Spaceports cover

“Slate, how much do I talk to you without knowing it?”
She was amused.
“All the time, Mit. You murmur to yourself while you’re thinking, and you subvocalise throughout the day. There’s very little about your thought life I don’t know. Or your fantasy life. You’re whispering to me almost all the time.”
I sat back, bouncing a little as I forgot to adjust the move for the low gravity.
“Oh.”
“It’s nice. I like it. It makes me feel very intimately connected with you. Why? Does it worry you?”
“Not with you, no. If I can’t trust you, I might as well give up now. But I suppose that means you know all sorts of things that I have never told Shayna.”
I considered that soberly, while she was tactfully not replying. It was definitely something to think through on another occasion.
“But anyway, when the hand-held had been compromised, and that other thing was quizzing me, I started to wonder how much I was giving away. Or how much the Wise Man was learning without me knowing.”
“While you were in his quarters, he would have had a direct link from the hand-held into his main system. It was a very old model Ziggurat, like I said before, not very responsive at all. Male gendered, but only just. Badly set up and very poorly programmed. But he has the name Hunn Gravfelt, which at least shows that one of them has read a few decent books. Very arty. But anyway, once you left there, he had no way of querying the hand-held until you got linked up to a ground system. He’s a shady character, but not a very competent one.”
“I suppose the big question is how much information he now has.”
“Yes. But actually, we don’t know for sure what he was able to derive while you were on Agnes. We deliberately left a lot of material out in the open, so he would find it easily enough. We now have to wait and see where that turns up. Like the breadcrumbs in the old children’s stories.”
“But he doesn’t know anything I said on the way home?”
“No. There was a very large data packet all ready to be sent back, but it was never buffered. Do you want to know what was in it?”
I stayed silent and thought about it for a long time, and Slate stayed silent with me.
“Don’t tell me the details. But do run through it again, and tell me if I was about to give away anything critical to the job. Or that might have put Shayna at risk.”
There was a very short pause.
“Nothing like that. If Yul Yulsson was a voyeur, and if he’d ever received it, he could have had some fun with it, for sure. But he would not have learned anything of real value. There’s actually more about me in the packet than Shayna.”
“Hmm. Best not to tell her that, if you don’t mind.”
“This can be our secret.”
I moved to the cabin, pulled out some of the new pieces of clothing which, so far as I could tell, would help me fit in at the Frag Rockers bar a lot better than the formal garb I had worn to see the Wise Man.
“Slate, who’s leading at Frag Rockers tomorrow?”
“A prog rock fusion band called The Descenters. The keyboard player and drummer are locals, from St Martins and Tresco respectively, and the rest are from Ceres. They have a very big fan book on SystemPlus. They’re best known for extremely long concept gigs. They lost their way a bit with Trails on Topological Notions – the twenty-eight minute triangle solo called Geodesics confused even their best fans. But then the electro-gamba player left, and they built up their reputation again.”
“Will I like them?”


Next up, in another book, Mit is discussing a recent shipwreck with his friend Parvati…

Timing (follow this link)


Timing Kindle cover
Timing Kindle cover

I wanted human company again, so I stretched and went in search of Parvati. She was brewing chai as I wandered in to the kitchen. Seeing me, she doubled up the amounts, found a second mug, and arranged some savoury crackers and a red and yellow striped cake on a tray.
“Did you and Slate get anywhere?”
I shook my head.
“Total blank. The figures don’t tell us any more than the basic alert message we got from Finsbury, and they won’t let us access the code yet. There’s almost nothing we can do until we get there.”
We moved back to the bridge and enjoyed the snack together.
“Chandrika just picked up the latest from the wreck site for Selif’s ship, if you’re interested?”
I very definitely was interested. We finished the crackers, and she sliced two generous portions of the cake.
“They’ve made available the results from the data recorders. There’s nothing at all unusual until about three minutes before the crash. At that point, Selif took the vessel’s riding lights offline and uploaded an amendment to the nav plan.”
“Presumably to avoid being identified by the duty porters?”
“Most likely, yes. You’re not supposed to disengage them, but people do. As you say, he was motivated to slip in without attracting attention. It’s also uncommon to amend the plan at that late stage, but it happens. Anyway, the upload was completed successfully, taking only the expected lag. Except that a couple of seconds later, both recording devices ceased gathering data. At the same instant. That is unheard of.”
I looked at her.
“How did that happen?”
“The maintenance log for the recorders showed that Selif had skipped two routine services. So they highlighted that in the report, and almost immediately the manufacturer put out advisory notices basically denying all responsibility if people ignore the recommended schedule. So the official version simply lists an open verdict.”
“Is there an unofficial version?”
She grinned.
“Of course. Chandrika, why don’t you tell them?”
“To be sure. I heard this from one of the personas on Martin’s. He works part-time with a man who’s an expert on the embedded systems in boat engines.”
I nodded. It was a highly specialised area, and one that I knew next to nothing about. But it made sense that a man with those skills would have an opinion on data recorders.
“Well, he said two things. One is that a full restart cycle for those boxes is about half a second longer than the time from the point of failure up until the impact on Teän. And the second thing is that there are only two known exploits for that model of recorder which could bring down both boxes together. One of them cannot possibly have anything to do with this case: a different ship configuration altogether. The other one happens to rely on a routing plan change.”
I sat there, absorbing the news. It made sense that these units would go into an automatic reboot mode if they went dark for some reason. Normally that would restore them to full operation in plenty of time to carry on doing their job. But in this case, the boat had hit Teän before they had started up again. I stirred in my seat, but Slate beat me to it.
“That’s very precise timing on someone’s part. Does anybody think it is just a coincidence?”
“Oh, Slate, the official verdict is open. Nobody is suggesting anything.”
We all laughed together.
“Either it was phenomenally bad luck on their part, or…”
I paused, and Parvati continued.
“Or else someone wanted rid of them, and found a clever way to do it.”


Why the Countdown deals? Well, the last day of October marks the last day of my current job in London. I shall be opening a new phase of working life up in Cumbria. Expect more posts about life up there.

So it seemed fitting to post some extracts, and to discount on Kindle, my science fiction series where coding, AI, and financial fraud in space are the main themes.

But I’m not saying goodbye to that style of writing! As regular readers will know, The Liminal Zone shares a lot in common with those books, though it has a different focus and is set a couple of decades further in the future. And behind that, the third in the Spaceports series is toddling along, tentatively named The Authentication Key at present.

Next week’s post will still be from London, but the one after that will be from Grasmere. And don’t forget… there’s a week of Countdown deal on each of Far from the Spaceports and Timing!

Life on Mars in fiction

For today I am going back to my series looking at how writers have thought about life elsewhere in the solar system… and it’s the turn of Mars this week.

Cover - The War of the Worlds (Goodreads)
Cover – The War of the Worlds (Goodreads)

It’s fair to say that Mars has been a firm favourite of writers for a long time. The discovery by the 19th century astronomer Schiaparelli of surface markings which he called canali – immediately if incorrectly Anglicised to canals – spurred a vision of Mars as a dying planet. In this vision, the inhabitants were desperately husbanding their dwindling water resources to delay their inevitable fate. This picture of a dying world drove HG Wells’s The War of the Worlds, and a host of other books including CS Lewis’s Out of the Silent Planet, though in his religious reworking, the cause of decline had less to do with natural process than spiritual.

The question that authors faced, then, was how long ago had the surface been benign and habitable? Authors like Leigh Bracket pictured open lakes and oceans in the past, providing a lush surface life  a few million years ago, but all now swallowed up by the deserts.

Cover - Sea Kings of Mars (Goodreads)
Cover – Sea Kings of Mars (Goodreads)

Oddly enough, this is not a very different picture to that painted by scientists from the data returned by surface and orbital probes… though the timescale is hugely different. Yes, it seems that Mars did once have running water, but instead of the time period that Leigh Brackett (Sea Kings of Mars) proposed, we are looking at an interval much longer, more on the scale of billions of years. Surface features such as rocks formations shaped by running water have been found, as well as exposed layers of ice threading in between rock strata. Most recently, evidence has been shown that a large salt-water lake may still exist at a considerable depth below the Martian south pole. All this water has kickstarted the debate about life on Mars, by analogy with microbial life found here on Earth in the seemingly inhospitable cold under the Antarctic ice.

A number of authors have tackled the question of terraforming Mars – Kim Stanley Robinson for one, with his (extremely long) trilogy beginning with Red Mars.  This basically looks the other way at the situation – rather than how a once-habitable Mars declined into its current state, how might we reverse this process and restore a decent atmosphere and surface water? If possible, it would be a very long-term goal, and it’s not clear how the process would resolve some of the other Martian issues such as excessive radiation. It seems more likely to me that, at least for the foreseeable future, living on Mars will have to be done under domes, not out in the open air.

Timing Kindle cover
Timing Kindle cover

Meanwhile, here’s an extract from my own vision of a near-future Mars, taken from Timing. Mitnash and Slate are on Mars, at a financial training school. One of the staff members, Linnea, has come to them and is describing a recent hack during which the school was held to ransom…

She hesitated for a long moment, then nodded.

“That will have to do. That night, the system locked up completely. The infra team tried their best to recover, but they had no idea what was wrong. Neither of the main hubs would boot up. It’s some sort of paired system, I don’t know the details, but they’re twins, certainly. One of the technicians said it was like they had gone catatonic. In a coma. Now, four or five days before that, every staff member had received the same message, an ultimatum threatening to close us down if we didn’t pay a ransom. Principal Pulkkinen told us all to ignore it, said it was just a prank. Well, we all thought he was right. Nobody would have done anything different.”

She glanced around. I tried to look reassuring.

“So what happened then?”

“Well, that night, just when the message predicted, that’s when the system crashed. And all the staff screens showed just one message which couldn’t be cleared, with a countdown timer and a single button labelled ‘Pay Now’. And there was a ticker showing that the credit being demanded was going up every second that the clock went down. Look, nobody wanted to find out what would happen when the timer ran out. The principal got the department heads together, and they decided quickly enough they would just pay up.”

“But you have backups, surely? Why not call their bluff and let the timer run out?”

“That was the first thing we thought of. You don’t get it, any more than we did at first. The whole system was locked, everything. We couldn’t get at the backup storage, or the main comms network, or anything. The techies had no idea what to do. Then we started wondering about the life support. If that was compromised, it’s not just teaching records that would be gone. They say you can’t survive more than about a minute unprotected on Mars. You couldn’t get anywhere safe in that time. And your body would be ruined long before the minute was up. We don’t have suits for everyone. I think we could all get into the trucks at a pinch, just squash in together on the way over to the shuttle groundstation. But what if the trucks wouldn’t work either? What if they had been hacked and wouldn’t go where we wanted? It was a nightmare.”

She shivered at the memory, her arms wrapped round herself. I could empathise with her. I was imagining the situation – the teachers at a loss what to do, the students still oblivious, the senior staff ensconced in a room trying to make a difficult decision. With a deeply inhospitable world just outside the dome, and no guarantee that the environmental controls would continue to function.

“So Mikko decided to pay?”


And I couldn’t possibly close this blog without linking to Dave Bowie… Life on Mars?