Category Archives: Timing

Life on Mars in fiction

For today I am going back to my series looking at how writers have thought about life elsewhere in the solar system… and it’s the turn of Mars this week.

Cover - The War of the Worlds (Goodreads)
Cover – The War of the Worlds (Goodreads)

It’s fair to say that Mars has been a firm favourite of writers for a long time. The discovery by the 19th century astronomer Schiaparelli of surface markings which he called canali – immediately if incorrectly Anglicised to canals – spurred a vision of Mars as a dying planet. In this vision, the inhabitants were desperately husbanding their dwindling water resources to delay their inevitable fate. This picture of a dying world drove HG Wells’s The War of the Worlds, and a host of other books including CS Lewis’s Out of the Silent Planet, though in his religious reworking, the cause of decline had less to do with natural process than spiritual.

The question that authors faced, then, was how long ago had the surface been benign and habitable? Authors like Leigh Bracket pictured open lakes and oceans in the past, providing a lush surface life  a few million years ago, but all now swallowed up by the deserts.

Cover - Sea Kings of Mars (Goodreads)
Cover – Sea Kings of Mars (Goodreads)

Oddly enough, this is not a very different picture to that painted by scientists from the data returned by surface and orbital probes… though the timescale is hugely different. Yes, it seems that Mars did once have running water, but instead of the time period that Leigh Brackett (Sea Kings of Mars) proposed, we are looking at an interval much longer, more on the scale of billions of years. Surface features such as rocks formations shaped by running water have been found, as well as exposed layers of ice threading in between rock strata. Most recently, evidence has been shown that a large salt-water lake may still exist at a considerable depth below the Martian south pole. All this water has kickstarted the debate about life on Mars, by analogy with microbial life found here on Earth in the seemingly inhospitable cold under the Antarctic ice.

A number of authors have tackled the question of terraforming Mars – Kim Stanley Robinson for one, with his (extremely long) trilogy beginning with Red Mars.  This basically looks the other way at the situation – rather than how a once-habitable Mars declined into its current state, how might we reverse this process and restore a decent atmosphere and surface water? If possible, it would be a very long-term goal, and it’s not clear how the process would resolve some of the other Martian issues such as excessive radiation. It seems more likely to me that, at least for the foreseeable future, living on Mars will have to be done under domes, not out in the open air.

Timing Kindle cover
Timing Kindle cover

Meanwhile, here’s an extract from my own vision of a near-future Mars, taken from Timing. Mitnash and Slate are on Mars, at a financial training school. One of the staff members, Linnea, has come to them and is describing a recent hack during which the school was held to ransom…

She hesitated for a long moment, then nodded.

“That will have to do. That night, the system locked up completely. The infra team tried their best to recover, but they had no idea what was wrong. Neither of the main hubs would boot up. It’s some sort of paired system, I don’t know the details, but they’re twins, certainly. One of the technicians said it was like they had gone catatonic. In a coma. Now, four or five days before that, every staff member had received the same message, an ultimatum threatening to close us down if we didn’t pay a ransom. Principal Pulkkinen told us all to ignore it, said it was just a prank. Well, we all thought he was right. Nobody would have done anything different.”

She glanced around. I tried to look reassuring.

“So what happened then?”

“Well, that night, just when the message predicted, that’s when the system crashed. And all the staff screens showed just one message which couldn’t be cleared, with a countdown timer and a single button labelled ‘Pay Now’. And there was a ticker showing that the credit being demanded was going up every second that the clock went down. Look, nobody wanted to find out what would happen when the timer ran out. The principal got the department heads together, and they decided quickly enough they would just pay up.”

“But you have backups, surely? Why not call their bluff and let the timer run out?”

“That was the first thing we thought of. You don’t get it, any more than we did at first. The whole system was locked, everything. We couldn’t get at the backup storage, or the main comms network, or anything. The techies had no idea what to do. Then we started wondering about the life support. If that was compromised, it’s not just teaching records that would be gone. They say you can’t survive more than about a minute unprotected on Mars. You couldn’t get anywhere safe in that time. And your body would be ruined long before the minute was up. We don’t have suits for everyone. I think we could all get into the trucks at a pinch, just squash in together on the way over to the shuttle groundstation. But what if the trucks wouldn’t work either? What if they had been hacked and wouldn’t go where we wanted? It was a nightmare.”

She shivered at the memory, her arms wrapped round herself. I could empathise with her. I was imagining the situation – the teachers at a loss what to do, the students still oblivious, the senior staff ensconced in a room trying to make a difficult decision. With a deeply inhospitable world just outside the dome, and no guarantee that the environmental controls would continue to function.

“So Mikko decided to pay?”


And I couldn’t possibly close this blog without linking to Dave Bowie… Life on Mars?

 

Planet 9?

Another space blog post today, complete with some thoughts about life out there, and an extract from my work-in-progress The Liminal Zone.

First, though, the elusive Planet 9. For some time now, astronomers and space scientists have been speculating that an additional planet, of considerable size, lies out beyond Pluto. The evidence is indirect, in that such a planet has not been observed via telescope. Hence the matter is currently unresolved. But a recent paper argues that its presence would solve several unexplained issues, while its absence would create several more.

Orbital resonance in the moons of Jupiter (Wiki)
Orbital resonance in the moons of Jupiter (Wiki)

So what are the problems? Essentially, they come down to the logic of orbital dynamics, which says that you can’t just put a bunch of planets in random orbits around a star and expect them to be stable. Even though the gravitational attraction between two planets is small, it nevertheless exerts a steady regularising influence on the two paths around the sun. So the orbits of our sister planets show all kinds of patterns of ratios which at first sight seem remarkable (they’re still remarkable when you take gravity into account, but in a different way). And the more patterns that you see, the more you can infer about things you can’t see.

This, for example, is how the outer planets beyond Saturn were deduced before they were observed. The planets from Saturn inwards have been known since prehistory. But when careful observations with a telescope could be made, small but noticeable perturbations in their tracks were found. These pointed to the existence of unknown planets further out. The same principle explains why the orbits of Neptune and Pluto are synchronised – two of Pluto’s orbits match 3 of Neptunes. So, although Pluto dips inside Neptune’s orbit for a couple of decades every 248 years (one Pluto year), they are never at risk of colliding. These synchronisations happen all over the place – for example within the moon systems of Jupiter and Saturn, within the asteroid belt, or forming the delicate internal patterns of Saturn’s rings.

Now, Pluto is the first major body in the Kuiper Belt, a disc of space outside Neptune which we now know contains a decent number of small asteroids and similar objects. So it starts around 30AU from the Sun (AU = Astronomical Units, the distance between Earth and Sun). But it then Belt stops, quite abruptly, around 50AU. Why should this be? Why not feather off gradually?

Trans-Neptunian Object orbits (LIve Science / ESO)
Trans-Neptunian Object orbits (LIve Science / ESO)

Additionally, as we have built up a catalogue of these asteroids, a picture is emerging in which a surprising number have orbits around the sun which are aligned with each other. The simplest way to explain this is to suppose that some sizeable, but as yet unknown, object is synchronising them.

So, why has it not yet been found? Well, first of all, as Douglas Adams said, space is “vastly, hugely, mind-bogglingly big” (Hitchhiker’s Guide to the Galaxy, chapter 8). So although the potential planet is several times larger than the Earth, it is on average 20 times further from the sun than Neptune is – 600AU – with an orbit that is quite noticeably elliptical rather than circular. That means that there is a lot of space to search in, and also that it is dark and cold out there. There is not a lot for optical or infrared telescopes to detect. But each new discovery helps narrow the search window down, and some lucky group of astronomers may well announce a discovery soon.

Or, of course, not. It may be that the apparent alignment we see will be eroded by more observations. Which would be a bit of a shame, in that it is always nice to have unknown things to discover. It would also leave several other problems unresolved. Other things being equal, I’d like Planet 9 to be found!

Artist's impression, Planet 9 (Live Science / JPL-CalTech)
Artist’s impression, Planet 9 (Live Science / JPL-CalTech)

So, what might it be like to live there? For one thing, cold and dark. Our sun is still the nearest and brightest star by a huge margin. But at 20 times further away than Pluto, it gets just 1/400 of the solar radiation of any kind. Or if you like, 0.0003% of what we enjoy on Earth. You’d want to know you had reliable sources of heat and light, if you went there. And it will take a long time to get there. It is not a place for a quick jaunt. For reference, Voyager 1 is a little over 100AU from Earth and has spent about 40 years getting there.

Could there be indigenous life out there? Well, life as we know it depends on liquid water, and the surface of Planet 9 is way too cold for that. But possibly, there could be subsurface heat turning ice into water at some depth? Or perhaps, there might be a moon which would be subject to gravitational flexing, just as happens to the inner moons of Jupiter and Saturn. This could – maybe – provide enough heat to give us water. We’ll have to wait and see.

I haven’t yet written anything going that far out from the sun. In the universe of Far from the Spaceports, an Earth-Mars trip takes a couple of weeks. An Earth-Pluto trip takes a few months. An Earth-Planet 9 trip would take anywhere from seven or eight months up to just over a year, depending on whereabouts in its orbit it happens to be. Not a journey you’d make lightly.

The Liminal Zone (temporary cover)
The Liminal Zone (temporary cover)

The Liminal Zone takes place on Charon, the main moon of Pluto. The New Horizons probe returned some fascinatingly detailed pictures to us of these two, transforming them from hazy blobs to detailed worlds. New Horizons is currently en route to an object further out in the Kuiper Belt, 2014 MU69, popularly known as Ultima Thule, and is due to arrive early next year. Finding a second destination more-or-less on the flight path after Pluto was a remarkable thing in itself, as objects are so exceedingly thinly spread out there. Anyway, The Liminal Zone is not a financial fraud book like Far from the Spaceports or Timing – it’s more of a voyage of discovery, both personally for the main character, Nina, and more generally for the society she is part of. So here is a short extract – Nina is talking to Percy, one of the Charon residents, about events surrounding an emergency several years ago…


Something about his expression made Nina stop.
“But you didn’t actually see anything?”
He drew back a little.
“Seeing’s not everything. Haven’t you ever just known something for sure?”
His eyes held hers, suddenly very intense, and she felt a little internal quaver run through her body. She had hoped it wouldn’t show, but then she saw the trace of a smile cross his eyes.
“I’ve got Welsh blood, you know. It helps me comprehend things which maybe can’t be seen with the naked eye. And what about you, Nina? Where do you come from?”
She went blank.
“I grew up in Lacus Gaudii. On the Moon.”
He shook his head.
“Not that recent. Go back a few generations. Where did your family live? Before they came up to settle in that lunar lake of yours.”
The noise of the kettle was maddening. She withdrew inside herself, trying to escape the pressure.
“I… I don’t know. I suppose I could find out. It’s never mattered.”
He looked away, letting the moment pass.
“Ah, but it just might make a difference here.”
She took a long breath and tried again.
“But did you actually see anything?”


I’ll be posting more on progress into The Liminal Zone as it comes along…

Where would be a good place to live?

Cover - Perelandra (Goodreads)
Cover – Perelandra (Goodreads)

It’s a question which besets many science fiction writers! Now, in the former days of the 20th century, when not nearly so much was known about other star systems, writers were free and easy with their destinations. C.S. Lewis, who anyway had other motivations in his writing than script scientific accuracy, cheerfully placed parts of his science fiction trilogy on Mars and Venus. E.E. (Doc) Smith had alien habitations all over the solar system, with a wild array of biological adaptations to high gravity, strange atmospheres, or whatever. And when writers got their characters out of the solar system into the galaxy at large, the diversity just kept on growing (except for those authors like Asimov, who for various reasons carefully avoided alien life altogether).

But these days we have a vast amount of data to steer our fiction. In some cases this means that environments get excluded – it would be a brave author indeed who would place a novel like Perelandra on the surface of Venus these days (unless they have a back-story of extensive terraforming). On the other hand, new opportunities for life in previously unconsidered places have emerged – like high up in the Venusian atmosphere, or in liquid oceans underneath the ice coatings of various outer system moons. These are not likely to be, as they say, life as we know it…

Schematic of habitable zone sizes (Penn State University)
Schematic of habitable zone sizes (Penn State University)

On a wider scale, we have a good idea what to look for as regards planets that might support life. Most thinking on the subject supposes that liquid water would be necessary – it’s just too useful a chemical in all kinds of ways to see how it wouldn’t participate in life’s chemistry. So we can plot the Goldilocks Zone for any given star (too close in, and water boils and evaporates… too far out, and it freezes)… but we know from our own solar system that this does not cover all the bases. Close-in planets are probably tidally locked to their sun, and so have a cooler side. Far-out planets may well have orbiting moons with sub-surface water, kept from freezing by a variety of factors.

Back in the day, people used to look for stars relatively similar to our own sun, on the grounds that we kind of knew what we were looking for. But these days, following the extraordinary success of planet-hunting space missions like Kepler (soon to be followed by TESS), we know that many planets circle dim red dwarf stars. For sure, the heat output is much less, but that just means that the Goldilocks Zone huddles close in. And red dwarf stars are immensely long-lived, which gives life time to develop. On the other hand, many red dwarfs also go through erratic flare cycles, potentially blasting their associated planets with X-rays. But for my money, the first place we may find life elsewhere is likely to be circling a red dwarf.

So from the writer’s point of view, it’s a great time to be postulating life elsewhere, but also a rapidly-changing one. New data is pouring in, and new ways of analysing and comprehending that data. It all adds up to a wealth of new ideas and imaginative leads…

Artist's impression, planets discovered by TRAPPIST orbiting a red dwarf star about 40 light years from Earth (NASA/JPL)
Artist’s impression, planets discovered by TRAPPIST orbiting a red dwarf star about 40 light years from Earth (NASA/JPL)

An interlude – some space news

I thought that this week I would have a quick break from the Inklings, King Arthur, and such like, and report some space news which I came across a few days ago.

Polly Reads Alexa Skill Icon
Polly Reads Alexa Skill Icon

But first, an update on my latest Alexa skill – Polly Reads. This showcases the ability of Alexa’s “big sister”, Polly, to read text in multiple voices and accents. So this skill is a bit like a podcast, letting you step through a series of readings from my novels. Half Sick of Shadows is there, of course, plus some readings from Far from the Spaceports and Timing. So far the skill is available only on the UK Alexa Skills site, but it’s currently going through the approval process for other sites world-wide. **update on Wednesday morning – I just heard that it has gone live world-wide now! ** Here is the Amazon US link ** 

Now the space news, and specifically about the asteroid Ceres (or dwarf planet if you prefer). Quite apart from their general interest, this news affects how we write about the outer solar system, so is particularly relevant to my near future series.

Artist's Impression of Dawn in orbit (NASA/JPL)
Artist’s Impression of Dawn in orbit (NASA/JPL)

Many readers will know that the NASA Dawn spacecraft has been orbiting Ceres for some time now – nearly three years. This has provided us with some fascinating insights into the asteroid, especially the mountains on its surface, and the bright salt deposits found here and there. But the sheer length of time accumulated to date – something like 1500 orbits, at different elevations – means that we can now follow changes as they happen on the surface.

Now the very fact of change is something of a surprise. Not all that long ago, it was assumed that such small objects, made of rock and ice, had long since ceased to evolve. Any internal energy would have leaked away millennia ago, and the only reason for anything to happen would be if there was a collision with some other external object like a meteorite. We knew that the gas giant planets were active, with turbulent storms and hugely powerful prevailing winds, but the swarms of small rocky moons, asteroids, and dwarf planets were considered static.

Ceres - Juling Crater (NASA/JPL)
Ceres – Juling Crater (NASA/JPL)

But what Dawn has shown us is that this is wrong. Repeated views of the same parts of the surface show how areas of exposed ice are constantly growing and shrinking, even over just a few months. This could be because new water vapour is oozing out of surface cracks and then freezing, or alternatively because some layer of dust is slowly settling, and so exposing ice which was previously hidden. At this stage, we can’t tell for sure which of those (or some third explanation) is true.

Composite view of Aruna Mons (NASA/JPL)
Composite view of Aruna Mons (NASA/JPL)

The evidence now suggests that Ceres once had a liquid water ocean – most of this has frozen into a thick crust of ice, with visible mineral deposits scattered here and there.

Certainly Ceres – and presumably many other asteroids – is more active than we had presumed. Such members of our solar system remain chemically and geologically active, rather than being just inert lumps drifting passively around our sun. As and when we get out there to take a look, we’re going to find a great many more surprises. Meanwhile, we can always read about them…

How close are personable AI assistants?

A couple of days ago, a friend sent me an article talking about the present state of the art of chatbots – artificially intelligent assistants, if you like. The article focused on those few bots which are particularly convincing in terms of relationship.

Amazon Dot - Active
Amazon Dot – Active

Now, as regular readers will know, I quite often talk about the Alexa skills I develop. In fact I have also experimented with chatbots, using both Microsoft’s and Amazon’s frameworks. Both the coding style, and the flow of information and logic, are very similar between these two types of coding, so there’s a natural crossover. Alexa, of course, is predominantly a voice platform, whereas chatbots are more diverse. You can speak to, and listen to, bots, but they are more often encountered as part of a web page or mobile app.

Now, beyond the day job and my coding hobby, I also write fiction about artificially intelligent entities – the personas of Far from the Spaceports and related stories (Timing and the in-progress The Liminal Zone). Although I present these as occurring in the “near-future”, by which I mean vaguely some time in the next century or two, they are substantially more capable than what we have now. There’s a lot of marketing hype about AI, but also a lot of genuine excitement and undoubted advancement.

Far from the Spaceports cover
Far from the Spaceports cover

So, what are the main areas where tomorrow’s personas vastly exceed today’s chatbots?

First and foremost, a wide-ranging awareness of the context of a conversation and a relationship. Alexa skills and chatbots retain a modest amount of information during use, called session attributes, or context, depending on the platform you are using. So if the skill or bot doesn’t track through a series of questions, and remember your previous answers, that’s disappointing. The developer’s decision is not whether it is possible to remember, but rather how much to remember, and how to make appropriate use of it later on.

Equally, some things can be remembered from one session to the next. Previous interactions and choices can be carried over into the next time. Again, the questions are not how, but what should be preserved like this.

But… the volume of data you can carry over is limited – it’s fine for everyday purposes, but not when you get to wanting an intelligent and sympathetic individual to converse with. If this other entity is going to persuade, it needs to retain knowledge of a lot more than just some past decisions.

A suitable cartoon (from xkcd.com)
A suitable cartoon (from xkcd.com)

Secondly, a real conversational partner does other things with their time outside of the chat specifically between the two of you. They might tell you about places, people, or things they had seen, or ideas that had occurred to them in the meantime. But currently, almost all skills and chatbots stay entirely dormant until you invoke them. In between times they do essentially nothing. I’m not counting cases where the same skill is activated by different people – “your” instance, meaning the one that holds any record of your personal interactions, simply waits for you to get involved again. The lack of any sense of independent life is a real drawback. Sure, Alexa can give you a “fact of the day” when you say hello, but we all know that this is just fished out of an internet list somewhere, and does not represent actual independent existence and experience.

Finally (for today – there are lots of other things that might be said) today’s skills and bots have a narrow focus. They can typically assist with just one task, or a cluster of closely related tasks. Indeed, at the current state of the art this is almost essential. The algorithms that seek to understand speech can only cope with a limited and quite structured set of options. If you write some code that tries to offer too wide a spectrum of choice, the chances are that the number of misunderstandings gets unacceptably high. To give the impression of talking with a real individual, the success rate needs to be pretty high, and the entity needs to have some way of clarifying and homing in on what it was that you really wanted.

Now, I’m quite optimistic about all this. The capabilities of AI systems have grown dramatically over the last few years, especially in the areas of voice comprehension and production. My own feeling is that some of the above problems are simply software ones, which will get solved with a bit more experience and effort. But others will probably need a creative rethink. I don’t imagine that I will be talking to a persona at Slate’s level in my lifetime, but I do think that I will be having much more interesting conversations with one before too long!

Bits and Pieces (2)

A follow-up to my earlier post this week, catching up on some more news. But first, here is a couple of snaps (one enlarged and annotated) I took earlier today in the early morning as I walked to East Finchley tube station.

Jupiter and Mars, annotated
 The Moon, Jupiter and Mars, annotated
The Moon, Jupiter, and Mars
The Moon, Jupiter and Mars

All very evocative, and leads nicely into my next link, which is a guest post I wrote for Lisl’s Before the Second Sleep blog, on the subject of title. Naturally enough, it’s a topic that really interests me – how will human settlements across the solar system adapt to and reflect the physical nature of the world they are set on?

In particular I look at Mars’ moon Phobos, both in the post and in Timing. So far as we can tell, Phobos is extremely fragile. Several factors cause this, including its original component parts, the closeness of its orbit to Mars, and the impact of whatever piece of space debris caused the giant crater Stickney. But whatever the cause… how might human society adapt to living on a moon where you can’t trust the ground below your feet? For the rest of the post, follow this link.

And also here’s a reminder of the Kindle Countdown offer on most of my books, and the Goodreads giveaway on Half Sick of Shadows. Here are the links…

Half Sick of Shadows is on Goodreads giveaway, with three copies to be won by the end of this coming weekend.

All the other books are on Kindle countdown deal at £0.99 or $0.99 if you are in the UK or US respectively – but once again only until the end of the weekend. Links for these are:

Science fiction series
Far from the Spaceports UK link and US link
Timing UK link and US link

Late Bronze Age historical fiction
In a Milk and Honeyed Land UK link and US link
Scenes from a Life UK link and US link
The Flame Before Us UK link and US link

And I haven’t forgotten about the upcoming Alexa news, following recent activity coding for the new Alexa Show (the one with the screen). But that’s for another day…

Bits and pieces

It’s been an exceptionally busy time at work recently, so I haven’t had time to write much. But happily, lots of other things are happening, so here’s a compendium of them.

Kindle Cover - Half Sick of Shadows
Kindle Cover – Half Sick of Shadows

First, Half Sick of Shadows was reviewed on Sruti’s Bookblog, with a follow-up interview. The links are: the review itself, plus the first and second half of the interview. “She wishes for people to value her but they seem to be changing and missing… She can see the world, but she always seemed curbed and away from everything.”

 

Secondly, right now there’s a whole lot of deals available on my novels, from oldest to newest. Half Sick of Shadows is on Goodreads giveaway, with three copies to be won by the end of next weekend.

All the other books are on Kindle countdown deal at £0.99 or $0.99 if you are in the UK or US respectively. Links for these are:

Science fiction series
Far from the Spaceports UK link and US link
Timing UK link and US link

Late Bronze Age historical fiction
In a Milk and Honeyed Land UK link and US link
Scenes from a Life UK link and US link
The Flame Before Us UK link and US link

Pretty soon there’ll be some more Alexa news, as I’ve been busily coding for the new Alexa Show (the one with the screen). But that’s for another day…

Future Possibilities 2

The second part of this quick review of the Future Decoded conference looks at things a little further ahead. This was also going to be the final part, but as there’s a lot of cool stuff to chat about, I’ve decided to add part 3…

Prediction of data demand vs supply (IDC.org)
Prediction of data demand vs supply (IDC.org)

So here’s a problem that is a minor one at the moment, but with the potential to grow into a major one. In short, the world has a memory shortage! Already we are generating more bits and bytes that we would like to store, than we have capacity for. Right now it’s an inconvenience rather than a crisis, but year by year the gap between wish and actuality is growing. If growth in both these areas continues as at present, within a decade we will only be able to store about a third of what we want. A decade or so later that will drop to under one percent.

Think about it on the individual level. You take a short video clip while on holiday. It goes onto your phone. At some stage you back it up in Dropbox, or iCloud, or whatever your favourite provider is. Maybe you keep another copy on your local hard drive. Then you post it to Facebook and Google+. You send it to two different WhatsApp groups and email it to a friend. Maybe you’re really pleased with it and make a YouTube version. You now have ten copies of your 50Mb video… not to mention all the thumbnail images, cached and backup copies saved along the way by these various providers, which you’re almost certainly not aware of and have little control over. Your ten seconds of holiday fun has easily used 1Gb of the world’s supply of memory! For comparison, the entire Bible would fit in about 3 Mb in plain uncompressed text, and taking a wild guess, you would use well under that 1 Gb value to store every last word of the world’s sacred literature. And a lot of us are generating holiday videos these days! Then lots of cyclists wear helmet cameras these days, cars have dash cams… and so on. We are generating prodigious amounts of imagery.

So one solution is that collectively we get more fussy about cleaning things up. You find yourself deleting the phone version when you’ve transferred it to Dropbox. You decide that a lower resolution copy will do for WhatsApp. Your email provider tells you that attachments will be archived or disposed of according to some schedule. Your blog allows you to reference a YouTube video in a link, rather than uploading yet another copy. Some clever people somewhere work out a better compression algorithm. But… even all these workarounds together will still not be enough to make up for the shortfall, if the projections are right.

Amazon Dot - Active
Amazon Dot – Active

Holiday snaps aside, a great deal of this vast growth in memory usage is because of emerging trends in computing. Face and voice recognition, image analysis, and other AI techniques which are now becoming mainstream use a great deal of stored information to train the models ready for use. Regular blog readers will know that I am particularly keen on voice assistants like Alexa. My own Alexa programming doesn’t use much memory, as the skills are quite modest and tolerably well written. But each and every time I make an Alexa request, that call goes off somewhere into the cloud, to convert what I said (the “utterance”) into what I meant (the “intent”). Alexa is pretty good at getting it right, which means that there is a huge amount of voice training data sitting out there being used to build the interpretive models. Exactly the same is true for Siri, Cortana, Google Home, and anyone else’s equivalent. Microsoft call this training area a “data lake”. What’s more, there’s not just one of them, but several, at different global locations to reduce signal lag.

Far from the Spaceports cover
Far from the Spaceports cover

Hopefully that’s given some idea of the problem. Before looking at the idea for a solution that was presented the other day, let’s think what that means for fiction writing.  My AI persona Slate happily flits off to the asteroid belt with her human investigative partner Mitnash in Far from the Spaceports. In Timing, they drop back to Mars, and in the forthcoming Authentication Key they will get out to Saturn, but for now let’s stick to the asteroids. That means they’re anywhere from 15 to 30 minutes away from Earth by signal. Now, Slate does from time to time request specific information from the main hub Khufu in Earth, but necessarily this can only be for some detail not locally available. Slate can’t send a request down to London every time Mit says something, just so she can understand it. Trying to chat with up to an hour lag between statements would be seriously frustrating. So she has to carry with her all of the necessary data and software models that she needs for voice comprehension, speech, and defence against hacking, not to mention analysis, reasoning, and the capacity to feel emotion. Presupposing she has the equivalent of a data lake, she has to carry it with her. And that is simply not feasible with today’s technology.

DNA Schematic (Wikipedia)
DNA Schematic (Wikipedia)

So the research described the other day is exploring the idea of using DNA as the storage medium, rather than a piece of specially constructed silicon. DNA is very efficient at encoding data – after all, a sperm and egg together have all the necessary information to build a person. The problems are how to translate your original data source into the various chemical building blocks along a DNA helix, and conversely how to read it out again at some future time. There’s a publicly available technical paper describing all this. We were shown a short video which had been encoded, stored, and decoded using just this method. But it is fearfully expensive right now, so don’t expect to see a DNA external drive on your computer anytime soon!

Microsoft data centre (ZDNet/Microsoft)
Microsoft data centre (ZDNet/Microsoft)

The benefits purely in terms of physical space are colossal. The largest British data centre covers the equivalent of about eight soccer grounds (or four cricket pitches), using today’s technology. The largest global one is getting on for ten times that size. With DNA encoding, that all shrinks down to about a matchbox. For storytelling purposes that’s fantastic – Slate really is off to the asteroids and beyond, along with her data lake in plenty of local storage, which now takes up less room and weight than a spare set of underwear for Mit. Current data centres also use about the same amount of power as a small town, (though because of judicious choice of technology they are much more ecologically efficient) but we’ll cross the power bridge another time.

However, I suspect that many of us might see ethical issues here. The presenter took great care to tell us that the DNA used was not from anything living, but had been manufactured from scratch for the purpose. No creatures had been harmed in the making of this video. But inevitably you wonder if all researchers would take this stance. Might a future scenario play out that some people are forced to sell – or perhaps donate – their bodies for storage? Putting what might seem a more positive spin on things, wouldn’t it seem convenient to have all your personal data stored, quite literally, on your person, and never entrusted to an external device at all? Right now we are a very long way from either of these possibilities, but it might be good to think about the moral dimensions ahead of time.

Either way, the starting problem – shortage of memory – is a real one, and collectively we need to find some kind of solution…

And for the curious, this is the video which was stored on and retrieved from DNA – regardless of storage method, it’s a fun and clever piece of filming (https://youtu.be/qybUFnY7Y8w)…

 

Left behind by events, part 3

This is the third and final part of Left Behind by Events, in which I take a look at my own futuristic writing and try to guess which bits I will have got utterly wrong when somebody looks back at it from a future perspective! But it’s also the first of a few blogs in which I will talk a bit about some of the impressions I got of technical near-future as seen at the annual Microsoft Future Decoded conference that I went to the other day.

Amazon Dot - Active
Amazon Dot – Active

So I am tolerably confident about the development of AI. We don’t yet have what I call “personas” with autonomy, emotion, and gender. I’m not counting the pseudo-gender produced by selecting a male or female voice, though actually even that simple choice persuades many people – how many people are pedantic enough to call Alexa “it” rather than “she”? But at the rate of advance of the relevant technologies, I’m confident that we will get there.

I’m equally confident, being an optimistic guy, that we’ll develop better, faster space travel, and have settlements of various sizes on asteroids and moons. The ion drive I posit is one definite possibility: the Dawn asteroid probe already uses this system, though at a hugely smaller rate of acceleration than what I’m looking for. The Hermes, which features in both the book and film The Martian, also employs this drive type. If some other technology becomes available, the stories would be unchanged – the crucial point is that intra-solar-system travel takes weeks rather than months.

The Sting (PInterest)
The Sting (PInterest)

I am totally convinced that financial crime will take place! One of the ways we try to tackle it on Earth is to share information faster, so that criminals cannot take advantage of lags in the system to insert falsehoods. But out in the solar system, there’s nothing we can do about time lags. Mars is between 4 and 24 minutes from Earth in terms of a radio or light signal, and there’s nothing we can do about that unless somebody invents a faster-than-light signal. And that’s not in range of my future vision. So the possibility of “information friction” will increase as we spread our occupancy wider. Anywhere that there are delays in the system, there is the possibility of fraud… as used to great effect in The Sting.

Something I have not factored in at all is biological advance. I don’t have cyborgs, or genetically enhanced people, or such things. But I suspect that the likelihood is that such developments will occur well within the time horizon of Far from the Spaceports. Biology isn’t my strong suit, so I haven’t written about this. There’s a background assumption that illness isn’t a serious problem in this future world, but I haven’t explored how that might happen, or what other kinds of medical change might go hand-in-hand with it. So this is almost certainly going to be a miss on my part.

Moving on to points of contact with the conference, there is the question of my personas’ autonomy. Right now, all of our current generation of intelligent assistants – Alexa, Siri, Cortana, Google Home and so on – rely utterly on a reliable internet connection and a whole raft of cloud-based software to function. No internet or no cloud connection = no Alexa.

This is clearly inadequate for a persona like Slate heading out to the asteroid belt! Mitnash is obviously not going to wait patiently for half an hour or so between utterances in a conversation. For this to work, the software infrastructure that imparts intelligence to a persona has to travel along with it. Now this need is already emerging – and being addressed – right now. I guess most of us are familiar with the idea of the Cloud. Your Gmail account, your Dropbox files, your iCloud pictures all exists somewhere out there… but you neither know nor care where exactly they live. All you care is that you can get to them when you want.

A male snow leopard (Wikipedia)
A male snow leopard (Wikipedia)

But with the emerging “internet of things” that is having to change. Let’s say that a wildlife programme puts a trail camera up in the mountains somewhere in order to get pictures of a snow leopard. They want to leave it there for maybe four months and then collect it again. It’s well out of wifi range. In those four months it will capture say 10,000 short videos, almost all of which will not be of snow leopards. There will be mountain goats, foxes, mice, leaves, moving splashes of sunshine, flurries of rain or snow… maybe the odd yeti. But the memory stick will only hold say 500 video clips. So what do you do? Throw away everything that arrives after it gets full? Overwrite the oldest clips when you need to make space? Arrange for a dangerous and disruptive resupply trip by your mountaineer crew?

Or… and this is the choice being pursued at the moment… put some intelligence in your camera to try to weed out non-snow-leopard pictures. Your camera is no longer a dumb picture-taking device, but has some intelligence. It also makes your life easier when you have recovered the camera and are trying to scan through the contents. Even going through my Grasmere badger-cam vids every couple of weeks involves a lot of deleting scenes of waving leaves!

So this idea is now being called the Cloud Edge. You put some processing power and cleverness out in your peripheral devices, and only move what you really need into the Cloud itself. Some of the time, your little remote widgets can make up their own minds what to do. You can, so I am told, buy a USB stick with trainable neural network on it for sifting images (or other similar tasks) for well under £100. Now, this is a far cry from an independently autonomous persona able to zip off to the asteroid belt, but it shows that the necessary technologies are already being tackled.

Artist's Impression of Dawn in orbit (NASA/JPL)
Artist’s Impression of Dawn in orbit (NASA/JPL)

I’ve been deliberately vague about how far into the future Far from the Spaceports, Timing, and the sequels in preparation are set. If I had to pick a time I’d say somewhere around the one or two century mark. Although science fact notoriously catches up with science fiction faster than authors imagine, I don’t expect to see much of this happening in my lifetime (which is a pity, really, as I’d love to converse with a real Slate). I’d like to think that humanity from one part of the globe or another would have settled bases on other planets, moons, or asteroids while I’m still here to see them, and as regular readers will know, I am very excited about where AI is going. But a century to reach the level of maturity of off-Earth habitats that I propose seems, if anything, over-optimistic.

That’s it for today – over the next few weeks I’ll be talking about other fun things I learned…

Left behind by events, part 1

This is the first part of two, in which I look at the ways in which books show their age.

I read a lot of science fiction, and I watch a fair number of science fiction films and TV series. The latest addition is Star Trek Discovery, the latest offering in that very-long-running universe. For those who don’t know, it’s set in a time frame a few years before the original series (the one with Captain Kirk), and well after the series just called Enterprise.

Discovery bridge (TrekNews)
Discovery bridge (TrekNews)

Inevitably the new series has had a mixed reception, but I have enjoyed the first couple of episodes. But the thing I wanted to write about today was not the storyline, or the characters, but the presentation of technology. The bridge of the starship Shenzhou looked just like you’d imagine – lots of touch screen consoles, big displays showing not just some sensor data but also some interpretive stuff so you could make sense of it. And so on. It looked great – recognisable to us 21st century folk used to our own touch screen phones and the like, but futuristic enough that you knew you couldn’t just buy it all from Maplin.

Original series Enterprise bridge (PInterest)
Original series Enterprise bridge (PInterest)

But herein lies the problem. Look back at an old episode of the original series, and the Enterprise bridge looks really naff! I dare say that back in the 1960s it also gave the impression of “this is cool future stuff”, but it certainly doesn’t look as though it’s another decade or so on from the technological world of Discovery.

Space 1999 paper output (http://catacombs.space1999.net)
Space 1999 paper output (http://catacombs.space1999.net)

Basically, our ability to build cool gadgets has vastly outstripped the imagination of authors and film makers. Just about any old science fiction book suffers from this. You find computers on board spaceships which can think, carry out prodigiously complex calculations, and so on, but output their results on reams of printed paper. Once you start looking, you can find all manner of things like this.

Forbidden Planet - The Tempest in space (DenOfGeek)
Forbidden Planet – The Tempest in space (DenOfGeek)

Now, on one level this doesn’t matter at all. The story is the main thing, and most of us can put up with little failures of imagination about just how quickly actual invention and design would displace what seemed to be far-fetched ideas. On the whole we can forgive individual stories for their foibles. If it’s a good story, we don’t mind the punched-card inputs, paper-tape outputs, and so on. We accept that in the spirit that the author intended. Also, many authors are not so very interested in the mechanics of the story, or how feasible the science is, but in different dimensions. How might people react in particular circumstances? What are the moral dimensions involved? What aspects of the story resonate most strongly with present-day issues?

The particular problem that Discovery has is simply that it is part of a wider set of series, and we already thought we knew what the future looked like! A particular peril for any of us writing a series of books.

Now it’s not just science fiction that can be left behind by the march of events. Our view of history can, and has, changed as new evidence comes to light. Casual assumptions that one generation makes about past societies, interactions, and chronology may be turned over a few years down the line. Sometimes we look at the ways in which older authors presented things and cringe. Historical fiction books might easily be overtaken by research and deeper understanding, just as much as science fiction. It’s a risk we all face.

Next time – some thoughts about my own science fiction series, Far from the Spaceports, and the particular things in that story that might get left behind. And also, the particular problems of writing about the near-future.

Far from the Spaceports cover
Far from the Spaceports cover