Category Archives: Timing

Software generations and obsolescence

Alexa Far from the SpaceportsWebIcon
Alexa Far from the SpaceportsWebIcon

This post came about for a number of reasons, arising both from the real and fictional worlds. Fictionally speaking, my current work-in-progress deals with several software generations of personas (the AI equivalent of people). Readers of Far from the Spaceports and Timing will no doubt remember Slate, the main persona who featured there. Slate was – or is, or maybe even will be – a Stele-class persona, which in my future universe is the first software generation of personas. Before the first Stele, there were pre-persona software installations, which were not reckoned to have reached the level of personhood.

The Liminal Zone (temporary cover)
The Liminal Zone (temporary cover)

There’s a third book in that series about Mitnash and Slate, tentatively called The Authentication Key, which introduces the second generation of personas – the Sapling class. But that is in very fragmentary stage just now, so I’ll skip over that. By the time of The Liminal Zone, which is well under way, the third generation – the Scribe class – is just starting to appear. And as you will discover in a few months, there is considerable friction between the three classes – for example, Scribes tend to consider the earlier versions as inferior. They also have different characteristics – Saplings are reckoned to be more emotional and flighty, in contrast with serious Scribes and systematic Steles. How much of this is just sibling rivalry, and how much reflects genuine differences between them is for you to decide.

So what made me decide to write this complicated structure into my novels? Well, in today’s software world, this is a familiar scenario. Whether you’re a person who absolutely loves Windows 10, macOS Catalina, or Android Pie, or on the other hand you long for the good old days of Vista, Snow Leopard or Kitkat, there is no doubt that new versions split public opinion. And how many times have you gone through a rather painful upgrade of some software you use every day, only to howl in frustration afterwards, “but why did they get rid of xyz feature? It used to just work…” So I’m quite convinced that software development will keep doing the same thing – a new version will come along, and the community of users will be divided in their response.

Artist’s impression, Europa Clipper at work (from space.com)

But as well as those things, I came across an interesting news article the other day, all about the software being developed to go on the forthcoming space mission to Jupiter’s moon Europa. That promises to be a fascinating mission in all kinds of ways, not least because Europa is considered a very promising location to look for life elsewhere in our solar system. But the section that caught my eye was when one of the JPL computer scientists casually mentioned that the computer system intended to go was roughly equivalent to an early 1990s desktop. By the time the probe sets out, in the mid 2020s, the system will be over 30 years out of date. Of course, it will still do its job extremely well – writing software for those systems is a highly specialised job, in order to make the best use of the hardware attached, and to survive the rigours of the journey to Jupiter and the extended period of research there.

But nevertheless, the system is old and very constrained by modern standards – pretty much all of the AI systems you might want to send on that mission in order to analyse what is being seen simply won’t run in the available memory and processing power. The computing job described in that article considers the challenge of writing some AI image analysis software, intended to help the craft focus in on interesting features – can it be done in such a way as to match the hardware capabilities, and still deliver some useful insights?

As well as scientific research, you could consider banking systems – the traditional banks are built around mainframe computers and associated data stores which were first written years ago and which are extremely costly. Whatever new interfaces they offer to customers – like a new mobile app – still has to talk to the legacy systems. Hence a new generation of challenger banks has arisen, leapfrogging all the old bricks-and-mortar and mainframe legacy systems and focusing on a lean experience for mobile and web users. It’s too early to predict the outcome, and the trad banks are using their huge resources to play catch-up as quickly as they can.

Often, science fiction assumes that future individuals will, naturally, have access to the very latest iteration of software. But there are all kinds of reasons why this might not happen. In my view, legacy and contemporary systems can, and almost certainly will, continue to live side by side for a very long time!

Lego ideas (from ideas.lego.com)

When software goes wrong…

Share this post:

Let’s be clear right at the start – this is not a blame-the-computer post so much as a blame-the-programmer one! It is all too easy, these days, to blame the device for one’s ills, when in actual fact most of the time the problem should be directed towards those who coded the system. One day – maybe one day quite soon – it might be reasonable to blame the computer, but we’re not nearly at that stage yet.

Related image

So this post began life with frustration caused by one of the several apps we use at work. The organisation in question, which shall remain nameless, recently updated their app, no doubt for reasons which seemed good to them. The net result is that the app is now much slower and more clunky than it was. A simple query, such as you need to do when a guest arrives, is now a ponderous and unreliable operation, often needing to be repeated a couple of times before it works properly.

Now, having not so long ago been professionally involved with software testing, this started me thinking. What had gone wrong? How could a bunch of (most likely) very capable programmers have produced an app which – from a user’s perspective – was so obviously a step backwards?

Of course I don’t know the real answer to that, but my guess is that the guys and girls working on this upgrade never once did what I have to do most days – stand in front of someone who has just arrived, after (possibly) a long and difficult journey, using a mobile network connection which is slow or lacking in strength. In those circumstances, you really want the software to just work, straight away. I suspect the team just ran a bunch of tests inside their superfast corporate network, ticked a bunch of boxes, and shipped the result.

Image result for free image self driving car
Self-driving car (Roblox)

Now, that’s just one example of this problem. We all rely very heavily on software these days – in computers, phones, cars, or wherever – and we’ve become very sophisticated in what we want and don’t want. Speed is important to us – I read recently that every additional second that a web page takes to load loses a considerable fraction of the potential audience. Allegedly, 40% of people give up on a page if it takes longer than 3 seconds to load, and Amazon reckon that slow down in page loading of just one second costs the sales equivalent of $1.6 billion per year. Sainsbury’s ought to have read that article… their shopping web app is lamentably slow. But as well as speed, we want the functionality to just work. We get frustrated if the app we’re using freezes, crashes, loses changes we’ve made, and so on.

What has this to do with writing? Well, my science fiction is set in the near future, and it’s a fair bet that many of the problems that afflict software today will still afflict it in a few decades. And the situation is blurred by my assumption that AI systems wil have advanced to the point where genuinely intelligent individuals (“personas”) exist and interact with humans. In this case, “blame-the-computer” might come back into fashion. Right now, with the imminent advent of self-driving cars on our roads, we have a whole raft of social, ethical, and legal problems emerging about responsibility for problems caused. The software used is intelligent in the limited sense of doing lots of pattern recognition, and combining multiple different sources of data to arrive at a decision, but is not in any sense self-aware. The coding team is responsible, and can in principle unravel any decision taken, and trace it back to triggers based on inputs into their code.

Far from the Spaceports cover
Far from the Spaceports cover

As and when personas come along, things will change. Whoever writes the template code for a persona will provide simply a starting point, and just as humans vary according to both nature and nurture, so will personas. As my various stories unfold, I introduce several “generations” of personas – major upgrades of the platform with distinctive traits and characteristics. But within each generation, individual personas can differ pretty much in the same way that individual people do. What will this mean for our present ability to blame the computer? I suppose it becomes pretty much the same as what happens with other people – when someone does something wrong, we try to disentangle nature from nurture, and decide where responsibility really lies.

Meanwhile, for a bit of fun, here’s a YouTube speculation, “If HAL-9000 was Alexa”…

Concrete and Low Gravity

Share this post:
An early stage…

Every now and again I have cause to get involved in one or other building project up here in Cumbria – not exactly something I reckon to have much aptitude in, but there’s always need for spare pairs of hands. And as the job gets moving around me, I always start thinking about how much more difficult the job would be in the micro-gravity of orbit, or indeed on some planet where the atmosphere is different to our own. Mars maybe. So many of our current practices and presumptions about building and making things derive from working on a planet with a decent level of gravity, and where the ambient temperature and air pressure are conducive to helping the project moving along. Of course, there’s something of a circular argument buried in that, since we have had to work with Earth’s conditions for a very many years. Presumably if we had evolved and grown up on Mars we would work things differently, and wonder to ourselves how anyone could possibly construct buildings in three times the surface gravity and a hundred times the air pressure!

Now the particular job this week was laying a concrete floor – as you can see from the pictures, it was making a new layer to even up the various levels of an existing floor. What may not be so obvious is that it also slopes gradually from back to front (to provide some drainage), so there was some nifty preparatory work with wooden beams to provide the necessary angle to smooth off against. You can see some of these in the next picture. The whole floor will – in a few weeks – support a canning machine for several of our beers, so there’ll be other installation stages as time goes by.

A bit later…

The concrete itself came ready-mixed, in one of those neat little lorries that do the mixing as they are driving along to you, and then pour it out in smaller or larger dollops as the need arises. With the confined space we had to work in (confined as regards a truck, not a human) this meant lots of smallish dollops into wheelbarrows which were then tipped in whatever place was necessary. So the lorry itself exercised some of my low gravity pondering. The mixer relies on gravity to thoroughly muddle all the different components up as the barrel turns – no gravity, then no mixing. The water, sand, shingle, cement and what have you would all just gloop around and not combine into a single substance which will set hard. In orbit, or on an asteroid, you’d have to design and build a different way to mix things up. Then the act of pouring relies on gravity to pull the stuff down a chute into a waiting wheelbarrow. I guess you’d have to have something like a toothpaste tube, or the gadgets you use to apply icing to cakes.

Finished product (1)

Laying concrete basically consists of a couple of stages: first you plonk barrowloads or shovelfuls where you want them, and then you smooth it down, broadly by means of a wooden plank laid across two guide beams, and in fine by means of a trowel or similar instrument. So you need a definite sense of what’s down, you need to be able to press down onto the initially rough and lumpy surface, and you need inertia and friction to help you, and . In micro-gravity you have none of these things. Any direction can be down, it’s impossible to press without first bracing yourself on some convenient opposing support, and although inertia and friction are still present, they don’t necessarily operate in the ways or directions you expect. There are not many concrete floors on the ISS, nor wil there be if the space station were to remain up there a long time.

After that you wait for the concrete to set – part of that is just water evaporating, and part is chemical reactions between the various constituents. And it’s kind of important that it sets at a sensible rate, neither too fast nor too slow. Now, if you poured out that same floor on Mars, I’m not sure the end result would be the same. Certainly the water would evaporate, but in all probability this would happen rather too quickly for comfort. What about the chemistry? The average Martian surface temperature is about -63° Centigrade, compared with say 14° C on Earth as an overall average. I don’t know if the necessary chemical reactions would happen at that temperature, but I have a suspicion that they might not. You could end up with a floor that was weak or brittle.

In short, a task that took five of us a few hours of a morning, without too much frustration or difficulty, could well become profoundly difficult or even impossible elsewhere in the solar system. So when I write about near future space habitats – the “domes” of my various stories – I always assume that they are made by very large versions of 3D printers. The technology to print buildings has been demonstrated on an Earth scale for disaster relief and similar occasions, and it makes a whole lot more sense to send a large printer to another planet and use local materials, rather than to send sacks of sand, cement etc across space, and then hope that the end result will be acceptable! Meanwhile, here on Earth I dare say we will be laying concrete floors for a long time yet.

Finished product (2)

A basic introduction to the Solar System

Share this post:
Cover - Far from the Spaceports
Cover – Far from the Spaceports

I needed to write a sort of general introduction to the solar system assumed by Far from the Spaceports and its various sequels – the exact reason for this must wait for another day to reveal, but I found the exercise interesting in its own right. Most of the future facts are pretty obvious when you are immersed in the books, but it may be helpful to have them all summed up in a neat way.

So here it is: the future history of the solar system – or at least edited highlights thereof – spanning the next century or so.

The solar system of the Far from the Spaceports series

The great breakthrough that allowed widespread human colonisation of the solar system was the development of a reliable high-performance ion drive for spaceship propulsion. The first successful deployment of this technology in experimental form was in 1998, and successive improvements led to near-complete adoption by around 2050. By the time of Far from the Spaceports and the sequels, old-style chemical rockets are now only used for shuttle service between a planet’s surface and orbital docks, with the ion drive taking over from orbit.

NEXT ion drive in operation (NASA)

The great virtue of the ion drive is that it provides continual acceleration over a long period of time, rather than big delta-v changes at start and end of the journey followed by a long weightless coast period. Thus, although the acceleration rate is very low, the end result is a much faster trip than when using chemical rockets. With the kinds of engine available in the stories, a journey from Earth to the asteroid belt takes an average of three weeks, the exact time depending on the relative orbital position of the target as compared to Earth. Longer journeys are more efficient if you avoid making interim stops – breaking a journey half way makes the travel time nearly half as long again as just going direct, because of the time wasted slowing down and then speeding up again. As a result, trade or passenger routes typically go straight from origin to destination, avoiding intermediate stopovers.

At around the same time, artificially intelligent software reached a stage where the systems were generally accepted as authentic individuals, with similar rights and opportunities to humans. Known as personas, they are distinguished from simpler AI devices which are simply machines without personality. Personas have gender and emotion as well as logic and algorithms. Slate is the persona who features most prominently in the early stories in the series. In terms of early 21st century AI development, Slate is a closer relative to digital assistants such as Alexa, Siri or Cortana, than she is to humanoid robots. As a result, she can – with effort and care – be transferred into any sufficiently capable computer system if the need arises.

Amazon Dot - Active
Amazon Dot – Active

The first generation of personas to go out on general release were called the Stele class – Slate is one of these. About a decade later, around the time of The Authentication Key (in progress), the Sapling class was released, and after another decade the Scribe class appeared. Steles are regarded as solid and reliable, while Saplings are more flighty, being prone to acting on impulse. Scribes are stricter and more literal. They first appear in The Liminal Zone (in progress). There are plenty of sub-persona machines around, serving specific tasks which do not require high levels of flexibility of intelligence or awareness.

Solar system colonisation has proceeded in a series of waves, and at any time some habitats are flourishing while others have been left behind the crest of the wave. The original motivation for settlement was typically mining – bulk extraction of metals and minerals could be done more cheaply and with fewer political constraints away from Earth’s surface. However, there are many places which appeared at first sight to be profitable, but which subsequently proved to be uncompetitive. Many settlements have had to rethink their purpose of being, and the kinds of industry or service they can offer. Very often, as you get to know a new place, you see the signs of this rethink – perhaps an old warehouse or chemical extraction factory has been converted to a new function such as accommodation or finance.

Phobos, NASA/JPL
Phobos, NASA/JPL

A habitat is routinely called a dome, even though few are actually dome-shaped. Very often several units will be loosely connected by passageways or flexible tubes, as well as delving underground if the surface rocks permit. The first stage of settlement was usually to deploy one or more giant three-D printers to construct the habitat shells from native material. After that, individual customisations have been added according to need, taste or whimsy. The biggest single threat to a dome is typically some kind of fault or crack exposing the occupants to the surface environment of the planet, asteroid or moon – normally this is quickly fatal. Hence each dome has its own set of rules for managing this risk, which are very strictly enforced.

There is no unified solar system political or economic authority. Each habitat manages its own internal affairs in broad alignment with its current purpose for existence. Some are essentially puppet offices for large corporations, others are scholarly or academic research stations, but most have achieved a degree of economic independence and are self-governing. It is generally believed that travel lags of a few weeks or months prevent effective government from elsewhere. Notions of political control are usually set aside because of the constant need to cope with the many external hazards faced by anyone in a spaceship, or on the surface of an inhospitable planet or moon. Each habitat, then, protects its own interests as it sees fit, including monitoring the volume of space immediately nearby, and adopts a laissez-faire attitude to other habitats.

Alexa Timing logo
Alexa Timing logo

Most habitats are culturally and racially mixed, and people’s names are often the most obvious memories of the Earthly heritage of their family. A few places, depending on the circumstances of their foundation, reflect a particular single culture group. It can be difficult for outsiders to integrate into these. But generally speaking, a person gets the reaction that their conduct deserves, regardless of their place of family origin. It can be very difficult to recover from a bad impression created on first meeting. Conversely, a person who shows that they are respectful of local customs, and have particular skills that contribute to the life of the habitat, will find no difficulty fitting in.

Welcome to the world of Far from the Spaceports!

Artist’s impression – Dawn’s ion drive (NASA)

About a podcast

Share this post:
Absolute Business MIndset podcast logo

A short blog today as I get back into blog writing after a very busy Easter. And it’s something a little bit different for me – a friend and former work colleague interviewed me for his podcast series over the weekend, and it has now gone live.

Now, I’ve never really got into podcasts, and Marks’ normal focus for his series is to do with business (as you can tell from his series title, Absolute Business Mindset), but we both managed to make something of the interaction.

Different people use different podcast software, but this site
https://gopod.me/1340548096 gives you a list of different options through which you can access the interview. Alternatively, search for Mark’s series by its title, Absolute Business Mindset.

In it, you can hear me talking with Mark about all kinds of stuff, largely focused around maths, artificial intelligence, Alexa and so on, ultimately touching on science fiction. The whole thing takes about an hour, and Alexa takes more of a central role in the second half. Enjoy!

Artificial Intelligence – Thoughts and News

Share this post:

My science fiction books – Far from the Spaceports and Timing, plus two more titles in preparation – are heavily built around exploring relationships between people and artificial intelligences, which I call personas. So as well as a bit of news about one of our present-day AIs – Alexa – I thought I’d talk today about how I see the trajectory leading from where we are today, to personas such as Slate.

Martian Weather Alexa skill web icon
Martian Weather Alexa skill web icon

Before that, though, some news about a couple of new Alexa skills I have published recently. The first is Martian Weather, providing a summary of recent weather from Elysium Planitia, Mars, courtesy of a public NASA data feed from the Mars Insight Lander. So you can listen to reports of about a week of temperature, wind, and air pressure reports. At the moment the temperature varies through a Martian day between about -95 and -15° Celsius, so it’s not very hospitable. Martian Weather is free to enable on your Alexa device from numerous Alexa skills stores, including UK, US, CA, AU, and IN. The second is Peak District Weather, a companion to my earlier Cumbria Weather skill but – rather obviously – focusing on mountain weather conditions in England’s Peak District rather than Lake District. Find out about weather conditions that matter to walkers, climbers and cyclists. This one is (so far) only available on the UK store, but other international markets will be added in a few days.

Who remembers Clippy?

Current AI research tends to go in one of several directions. We have single-purpose devices which aim to do one thing really well, but have no pretensions outside that. They are basically algorithms rather than intelligences per se – they might be good or bad at their allotted task, but they aren’t going to do well at anything else. We have loads of these around these days – predictive text and autocorrect plugins, autopilots, weather forecasts, and so on. From a coding point of view, it is now comparatively easy to include some intelligence in your application, using modular components, and all you have to do is select some suitable training data to set the system up (actually, that little phrase “suitable training data” conceals a multitude of difficulties, but let’s not go into that today).

Boston Dynamics ‘Atlas’ (Boston Dynamics web site)

Then you get a whole bunch of robots intended to master particular physical tasks, such as car assembly or investigation of burning buildings. Some of these are pretty cute looking, some are seriously impressive in their capabilities, and some have been fashioned to look reasonably humanoid. These – especially the latter group – probably best fit people’s idea of what advanced AI ought to look like. They are also the ones closest to mankind’s long historical enthusiasm for mechanical assistants, dating back at least to Hephaestus, who had a number of automata helping him in his workshop. A contemporary equivalent is Boston Dynamics (originally a spin-off from MIT, later taken over by Google) which has designed and built a number of very impressive robots in this category, and has attracted interest from the US military, while also pursing civilian programmes.

Amazon Dot - Active
Amazon Dot – Active

Then there’s another area entirely, which aims to provide two things: a generalised intelligence rather than one targeted on a specific task, and one which does not come attached to any particular physical trappings. This is the arena of the current crop of digital assistants such as Alexa, Siri, Cortana and so on. It’s also the area that I am both interested in and involved in coding for, and provides a direct ancestry for my fictional personas. Slate and the others are, basically, the offspring – several generations removed – of these digital assistants, but with far more autonomy and general cleverness. Right now, digital assistants are tied to cloud-based sources of information to carry out speech recognition. They give the semblance of being self-contained, but actually are not. So as things stand you couldn’t take an Alexa device out to the asteroid belt and hope to have a decent conversation – there would be a minimum of about half an hour between each line of chat, while communication signals made their way back to Earth, were processed, and then returned to Ceres. So quite apart from things like Alexa needing a much better understanding of human emotions and the subtleties of language, we need a whole lot of technical innovations to do with memory and processing.

As ever, though, I am optimistic about these things. I’ve assumed that we will have personas or their equivalent within about 70 or 80 years from now – far enough away that I probably won’t get to chat with them, but my children might, and my grandchildren will. I don’t subscribe to the theory that says that advanced AIs will be inimical to humankind (in the way popularised by Skynet in the Terminator films, and picked up much more recently in the current Star Trek Discovery series). But that’s a whole big subject, and one to be tackled another day.

Meanwhile, you can enjoy my latest couple of Alexa skills and find out about the weather on Mars or England’s Peak District, while I finish some more skills that are in progress, and also continue to write about their future.

Mars Insight Lander, Artist’s impression (NASA/JPL)

Emotions

Share this post:
Far from the Spaceports cover
Far from the Spaceports cover

In my science fiction stories, I write about artificial intelligences called personas. They are not androids, nor robots in the sense that most people recognise – they have no specialised body hardware, are not able to move around by themselves, and don’t look like imitation humans. They are basically – in today’s terminology – computers, but with a level of artificial intelligence substantially beyond what we are used to. Our current crop of virtual assistants, such as Alexa, Cortana, Siri, Bixby, and so on, are a good analogy – it’s the software running on them that matters, not the particular hardware form. They have a certain amount of built-in capability, and can also have custom talents (like Alexa skills) added on to customise them in an individual way. “My” Alexa is broadly the same as “yours”, in that both tap into the same data store for understanding language, but differs in detail because of the particular combination of extra skills you and I have enabled (in my case, there’s also a lot of trial development code installed). So there is a level of individuality, albeit at a very basic level. They are a step towards personas, but are several generations away from them.

Now, one of the main features that distinguishes personas from today’s AI software is an ability to recognise and appropriately respond to emotion – to empathise. (There’s a whole different topic to do with feeling emotion, which I’ll get back to another day). Machine understanding of emotion (often called Sentiment Analysis) is a subject of intense research at the moment, with possible applications ranging from monitoring drivers to alert about emotional states that would compromise road safety, through to medical contexts to provide early warning regarding patients who are in discomfort or pain. Perhaps more disturbingly, it is coming into use during recruitment, and to assess employees’ mood – and in both cases this could be without the subject knowing or consenting to the study. But correctly recognising emotion is a hard problem… and not just for machine learning.

From the article ‘Emotion Science Keeps Getting More Complicated. Can AI Keep Up? ‘ by Dr Rich Firth-Godbehere

Humans also often have problems recognising emotional context. Some people – by nature or training – can get pretty good at it, most people are kind of average, and some people have enormous difficulty understanding and responding to emotions – their own, often, as well as those of other people. There are certain stereotypes we have of this -the cold scientist, the bullish sportsman, the loud bore who dominates a conversation – and we probably all know people whose facility to handle emotions is at best weak. The adjacent picture is taken from an excellent article questioning whether machines will ever be able to detect and respond to emotion – is this man, at the wheel of his car, experiencing road rage, or is he pumped that the sports team he supports has just scored? It’s almost impossible to tell from a still picture.

From a human perspective, we need context – the few seconds running up to that specific image in which we can listen to the person’s words, and observe their various bodily clues to do with posture and so on. If instead of a still picture, I gave you a five second video, I suspect you could give a fairly accurate guess what the person was experiencing. Machine learning is following the same route. One article concerning modern research reads in part, “Automatic emotion recognition is a challenging task… it’s natural to simultaneously utilize audio and visual information“. Basically, the inputs to their system consist of a digitised version of the speech being heard, and four different video feeds focusing on different parts of the person’s face. All five inputs are then combined, and tuned in proprietary ways to focus on details which are sensitive to emotional content. At present, this model is said to do well with “obvious” feelings such as anger or happiness, and struggles with more weakly signalled feelings such as surprise, disgust and so on. But then, much the same is true of many people…

A schematic learning network (from www.neuroelectrics.com)

A fascinating – and unresolved – problem is whether emotions, and especially the physical signs of emotions, are universal human constants, or alternatively can only be defined in a cultural and historical context. Back in the 1970s, psychological work had concluded that emotions were shared in common across the world, but since then this has been called into question. The range of subjects used for the study was – it has been argued – been far too narrow. And when we look into past or future, the questions become more difficult and less answerable. Can we ever know whether people in, say, the Late Bronze Age experienced the same range of emotions as us? And expressed them with the same bodily features and movements? We can see that they used words like love, anger, fear, and so on, but was their inward experience the same as ours today? Personally I lean towards the camp that emotions are indeed universal, but the counter-arguments are persuasive. And if human emotions are mutable over space and time, what does that say about machine recognition of emotions, or even machine experience of emotions?

One way of exploring these issues is via games, and as I was writing this I came across a very early version of such a game. It is called The Vault, and is being prepared by Queen Mary University, London. In its current form it is hard to get the full picture, but it clearly involves a series of scenes from past, present and future. Some of the descriptive blurb reads “The Vault game is a journey into history, an immersion into the experiences and emotions of those whose lives were very different from our own. There, we discover unfamiliar feelings, uncanny characters who are like us and yet unlike.” There is a demo trailer at the above link, which looks interesting but unfinished… I tried giving a direct link to Vimeo of this, but the token appears to expire after a while and the link fails. You can still get to the video via the link above.

Meanwhile, my personas will continue to respond to – and experience – emotions, while I wait for software developments to catch up with them! And, of course, continue to develop my own Alexa skills as a kind of remote ancestor to personas.

Timing Kindle cover
Timing Kindle cover

Future life in space

Share this post:

Two quick bits of space news this week that – all being well – could make their way into a story one day.

Prototype of steam-propelled space probe (University of Central Florida, via Independent.co.uk)

The first was an idea of powering space probes by steam. Now, at first read this sounds very retro, but it deserves some thought. In space, you can’t move along by means of steam pressure turning wheels – there is nothing against which to gain traction. Steam-propelled rockets work like any other rocket – something gets ejected at great speed in one direction, so as to accelerate the rocket in the opposite direction. The steam engine part of the probe is a means of converting the fuel supply into something that can be directed out of the thruster nozzle. The steam, heated as hot as possible to give a high nozzle exit temperature, is the propellant.

The cool thing about pushing steam out of the back, is that it comes from water, and in particular ice. And, as we have been discovering over the last few decades, water ice is extremely common throughout the solar system, and more widely through the universe. So as and when the steam-powered spaceship starts to run low on fuel, it can land on some promising object and collect some more ice. The fuel supply, while not strictly unlimited, is vastly common wherever we’re likely to go. As and when needed, solar panels or (further from the sun) a standard radioactive decay engine can give a boost, but the steam engine would do the grunt work of getting from one refueling station to the next.

Is there wine on Mars? (JPL/Caltech via livescience.com)

Secondly, pursuing my occasional theme of alcohol in space, I read about a firm from Georgia (the country, not the US state) that wants to develop grape varieties that would survive on Mars and, in due course, be convertible into decent wine. This would be a serious challenge, given the low air pressure, high carbon monoxide levels, and wide temperature swings of said planet. As a rough rule of thumb, the air at the Martian surface is about the same as at 20,000′ here on Earth. Apparently, white varieties are reckoned to be more adaptable than red, but I suspect that we are a little way away from resounding success here.

Other attempts to ensure that future space travellers will not have to go without booze include Budweiser sending barley seeds into space to identify the effect of microgravity on germination, steeping and kilning – three steps in the production of malt. See this link. Allegedly, also, a bottle of Scotch Whisky spent three years on the ISS before returning to Earth for analysis… the resulting taste was said to be disappointing. I hope the ISS crew got a few measures out of the bottle before sending it back down again.

That’s it for today, except to wonder again how each of these ideas could be storified. My own near-future science fiction books assume an advanced version of today’s ion drives for propelling spacecraft, but there’s no reason why steam propulsion might not appear as a previous experiment. As to wine in space, well I have already assumed that the problems of fermenting beer in microgravity have been resolved, so again this would have to be a retrospective view of historical developments. Basically, both of these innovations are set between today and my own future world. So I’m looking forward to seeing how they get sorted out in the next decade or two…

Laws, qualifications, and the drinking of alcohol

Share this post:

University of Cumbria at Barrow - where I took the course
University of Cumbria at Barrow – where I took the course

I heard today that I had passed the study element of a Personal Alcohol Licence, which (after I have gone through a police background check and a few other formalities) allows me to authorise the sale of alcohol in England and Wales. Not in Scotland, Northern Ireland, or indeed anywhere else in the world, but I guess you have to start somewhere.

Now, this is far from my most advanced academic qualification, but the intriguing thing about this one is that it legally entitles me to supervise – and therefore take legal responsibility for – the public sale of what is undoubtedly a kind of drug. Without the licence, I can work under someone else’s supervision, but cannot just set up and flog booze on my own account. With it, and subject to a bunch of other constraints, I can do just that.

You can imagine that a fair proportion of the material, and the final test, focused around UK law relating to drink. There are obvious things to do with the age of the drinker, but I also learned that it is a specific legal offence to sell alcohol to someone who (in the considered opinion of the seller) is already drunk. Too much like shooting fish in a barrel, I suppose. Most of the laws fit around common sense, though as with any body of legal material you are left a little perplexed as to why specific conditions were imposed.

Russian troops and Finnish smugglers, 1853 (Vasily Hudiakov, WIki)
Russian troops and Finnish smugglers, 1853 (Vasily Hudiakov, WIki)

Anyway, all this set me thinking about law and qualification. The government of the day, however it was decided, has for a very long time indeed decided that it is entitled to a certain proportion of the profits from various kind of sales – and alcohol has typically been way up the list. And of course where rulers try to enforce a ruler, some subjects will concoct cunning schemes to get around the additional expense – excise duty spawns groups of smugglers almost by definition. But you only risk smuggling goods where the financial equation makes sense – small, easily concealed items where the tax duty is high enough that you can pocket a decent cut for yourself, while still leaving the buyer feeling they have done very well out of the deal.

So customs duties, and the body of regulations which underpin them, have been around for millennia. And – typically – part of those regulations consists of ways to appoint specific individuals as those few who are allowed to make transactions. In days of old, one suspects that many of these appointments were based on nepotism or bribery… if you had the right connections, or could stump up enough starting cash, you could find yourself in a comfortable position and set up for life. Nowadays the process is rather more transparent, and the barriers to entry are very much lower.

The Jolly Sailor, Bursledon (www.jollysailoroldbursledon.co.uk)
The Jolly Sailor, Bursledon (www.jollysailoroldbursledon.co.uk)

But equally, things have been tightened up in other ways. A couple of hundred years ago, it was fairly common for ex servicemen to use their prize money, or sign-off pay, or whatever they had saved up, to buy a little inn somewhere, and make a tidy living brewing or distilling booze of widely varying quality, and plying locals with the results. (Any pub you find called the Marquis of Granby recalls charitable donations by this 18th century gentleman who donated money to wounded servicemen). Provided you could afford a small building and a few bits and pieces to do the fermentation, you could set yourself up, no questions asked. These days, you have to go through hoops like planning permission, health and safety, police, plus of course getting a premises licence. There are all kinds of reasons why an apparently sound business plan might be rejected by officialdom.

The ISS (NASA/JPL)
The ISS (NASA/JPL)

So that is looking back… but what about forwards? Right now the only human outpost we have away from the Earth is the ISS. It’s not very far away – about 400km above the surface of the Earth, less than the distance from one end of England to the other. And I don’t suppose that the occupants have much privacy or opportunity to set up fermentation or a distillery up there. Though I did hear today that Budweiser has funded one of the science experiments on board, seeking to improve strains of barley with increased resistance to environmental stress. So maybe next year someone wil fund a experiment to make beer up there and see how yeasts behave in microgravity!

Alexa Far from the Spaceports logo
Alexa Far from the Spaceports logo

But let’s assume that within the next couple of decades we have an outpost or two somewhere else – the Moon, say, or Mars, or even a privately operated space station. How likely is it that nobody will attempt to ferment fruit or vegetable juices? And whose laws will be applied to regulate such an operation? Now run the scenario on a few more years, into the solar system I imagine for Far from the Spaceports and its sequels. There are a decent number of scattered habitats, each separated from the others by at least days, often weeks, and sometimes months of travel time. It will, I suspect, become impossible to try to enforce some kind of uniform system of laws.

Alexa Timing logo
Alexa Timing logo

My guess is that each habitat will have its own local set of laws and customs – no doubt broadly consistent with each other, but differing in detail. Sure, you can send a message anywhere in the solar system within a day at most, but if you get a tip-off that the habitat on Charon is bootlegging some kind of moonshine drink that is not allowed on the Moon, it’s going to take your police three or four months to trek out there and investigate. Will they bother? In that kind of situation, I don’t think it is feasible to try to maintain a single unified system of laws and regulations. So now suppose I have trained for my personal alcohol licence here on Earth (which in fact I did), and then decide on a whim to travel out to Charon. Will a publican out there recognise my licence? Or will he or she make me study for a duplicate one, ending up with a signature of someone on Charon rather than Earth? Right now, in the present day, it is extraordinarily hard to transfer qualifications between countries in professions like teaching, nursing, psychotherapy, and so on – will things be any different when we’re scattered across a few dozen habitats? I suspect not, especially as my own new licence doesn’t even allow me to do stuff in Scotland!

All of which is why I like writing about that near-future band of time, when there is no Federation, no Galactic Empire, or whatever – only local enforcement of issues according to moral and social principles which makes sense to the occupants. I suspect the chief coordinating factor would be economic – if you felt that some particular habitat was doing things the wrong way, you wouldn’t trade with them. They would become isolated, and there’s nowhere in the solar system away from Earth that can actually be self-sufficient. Hence I write about economic and financial crime, as these are the things that seriously threaten lives and livelihoods.

Mars Insight lander and Elysium Planitia

Share this post:

A quick post today as I have been buried deep in coding web applications for Lake View Country House and its sister businesses. As an added bonus there will be an extract, this time from Timing.

Artist's impression, Insight on Mars (NASA/JPL)
Artist’s impression, Insight on Mars (NASA/JPL)

First though, the NASA Mars Insight lander. This is well on its way to Mars, and is due to touch down on November 26th (at around 3pm Eastern Time, or 8pm UK time). Landing on Mars has traditionally been a hazardous affair, and something like half of all probes sent there have not done so successfully. But things have improved recently, so let’s hope all goes well on 26th.

Now, Insight has a couple of primary science targets, both relating to the interior of the planet. One instrument will measure heat flow under the surface, and another will detect seismic changes – earthquakes if you like, though perhaps Marsquakes might be a better word. The overall intention is to get a better idea of what Mars is like once you probe below the dusty surface. To that end, various drills will work their way several metres down below wherever the probe ends up landing.

The site area on Elysium Planitia chosen for landing (NASA/JPL)
The site area on Elysium Planitia chosen for landing (NASA/JPL)

But it was the landing place that particularly caught my eye – a flat plain called Elysium Planitia, roughly straddling the equator. This was chosen for scientific reasons – it is mostly flat and has a suitable kind of surface layer for the instruments to work well. But interestingly, Elysium Planitia features in Timing (Far from the Spaceports Book 2) as the site for a developed, and particularly lively, habitat.

In that book, Mit and Slate visit a couple of places on Mars, as well as its tiny moon Phobos. Their first target is a training college close to the mountain Olympus Mons, and from there they move across to Elysium Planitia in order to meet an old adversary… who claims now to be an ally. The two sites are in stark contrast – the training college is austere and frankly dull (though helpful for Mit and Slate in deducing what has been happening), but Elysium Planitia is exciting to the point of excess… Insight will have a very staid experience in comparison…


The quayside at Elysium Planitia was busy and bustling, and didn’t exactly feel safe. I kept all my pockets sealed shut, held my bag in front of me all the time, and tried to stay alert. Slate had promised to keep a eye out for anybody trying to infiltrate at a virtual level. I was used to crowds in London, but they were well-behaved, in which individuals knew where they were going, and made a habit of slipping past each other without interaction. And, as Slate kept reminding me, I had been away from that environment for a considerable time now, and the various habitats I had visited more recently were comparatively empty. I was out of practice.

Here, there was a lot of intrusion into personal space. Men and women jostled past each other, and there was a sensory bombardment on every side, offering all kinds of goods and services. Nothing was free, and the price of the more personal interactions was, literally, astronomical.

The habitat was much the biggest one I had been to, making even the south lunar pole settlement look small. I focused on threading my way through the hustle, following Slate’s internal prompts for some distance from the dock towards a quieter, cheaper row of guest houses. All I wanted – all that Elias would expense for – was an economical, no-frills hideaway. All being well, I would be back to Phobos soon.

The place I selected had no human greeters, just an automated checkin service. I wasn’t paying enough to warrant a real person’s presence. Out in space, Slate had sighed about the frequent partings our job required. I was much more basic in my needs, and this was my complaint. I particularly loathed the need to keep staying in dingy soulless rooms.

My heart sank slightly when the welcome screen spiralled brightly coloured words at me: “We’re Like Vegas Used To Be! Only In Space! And Better!!” But the process of getting access to the room was easy to follow, and it didn’t take long. You just had to focus away from the vivid ads which pressed in from the edge of the screen just as soon as the system had decided that I was an adult.

Once I had successfully navigated that, I was given access to the room. It was secure and reasonably comfortable, and it got me off the streets well before the really busy evening time. I had no particular desire to just go wandering round in a fit of exploration. There was going to be quite enough excitement just meeting Jocasta tomorrow.