Some space news


I ran out of time this week to do much by way of blogging, so here are three bits of space news which may well make their way into a story sometime.

Stop Press: just today NASA announced that a relatively close star (39 light years away) has no less than 7 planets approximately Earth size orbiting it… see and the schematic picture at the end of the blog.

False colour image of the area of interest (NASA/JPL)
False colour image of the area of interest (NASA/JPL)

Firstly, the Dawn probe, still faithfully orbiting the asteroid Ceres, has detected complex organic molecules in two separate areas in the middle latitudes of the dwarf planet. The onboard instruments are not accurate enough to pin the molecules down precisely, but it seems likely that they are forms of targets.  The analysis also suggests that they formed on Ceres itself, rather than being deposited there by a meteor. The most likely cause is thought to be the action of warm water circulating through chemicals under the surface. Some of the headlines suggest that this could signal the presence of life, but it’s more cautious to say that it shows that the conditions under which life could develop are present there.

Recent cratering on Mars (HiRise camera, U Arizona)
Recent cratering on Mars (HiRise camera, U Arizona)

The second snippet spells difficulty for my hypothetical Martian settlements. This picture was captured by the Mars Orbiter and shows two larger impact craters surrounded by a whole array of smaller ones. The likely scenario is that one object split into a cluster of fragments as it passed through the Martian atmosphere. This of itself wouldn’t be too surprising, but inspection of older photos of the same area shoes that this impact happened between 2008 and 2014. No time at all in cosmic terms, and not so much fun if you’d carefully built yourself a habitable dome there.

The problem is the thinness of the Martian atmosphere. It is considerably deeper than our one here on Earth, but hugely less dense. So when meteors arrive at the top of the layer of air, they don’t burn up so comprehensively as Earth-bound ones. More of them reach the surface. Even a comparatively small rock has enough kinetic energy to really spoil your day. Something that will need some planning…
Artist's impression of Kuiper Belt object (NASA)
Artist’s impression of Kuiper Belt object (NASA)

Finally we zoom right out to the cold, dark reaches of the outer solar system. A long way beyond the orbit of Pluto there is a region called the Kuiper Belt, and out in the Kuiper Belt a new dwarf planet has recently been found. It goes by the catchy name of 2014 UZ224 and it took nearly two years to confirm its existence. Best estimates are that it is a little over 300 miles across – about half the size of Ceres. I’ve never sent Mitnash and Slate out anywhere like that – it’s about twice as far from Earth as Pluto, and the journey alone would take about four months one-way. I do have vague plans for a story set out in the Kuiper Belt, but appropriately enough it’s some way off yet. But even at that distance, you’re still less than half a percent of the distance to the nearest star… space is really big!

Schematic picture of Trappist-1's planets
Schematic picture of Trappist-1’s planets

Leave a Reply

Your email address will not be published. Required fields are marked *